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Executive Summary

CREEM were commissioned to review statistical modelling meth-
ods currently used in the marine renewables industry. We also com-
pared the performance of these methods and appropriate alternatives
not presently in use.

An extensive review of the available literature was undertaken
and three modelling methods (GAMs, GAMMs and CReSS) were
identified for the methodological comparison. This comparison was
carried out using simulated scenarios based on off-shore and near-
shore data collected from existing marine renewable developments.
In particular, off-shore and near-shore data were each generated
with: no-change post-impact, 30% post-impact decrease and post-
impact redistribution scenarios.

The ability of CReSS, GAMs and GAMMs to recover genuine
impact-related changes was examined. In addition to evaluation
based around pre/post-impact changes, the relative performance
of the methods at returning both accurate predictions (either pre
or post impact) and realistic measures of precision about these pre-
dictions was also measured. Further, the ability of each method to
correctly identify post-impact effects (if any) was also quantified
(e.g. no-change post-impact, post-impact decreases and post-impact
redistribution).

CReSS performed better than GAMs and GAMMs at successfully
locating spatially explicit impact-related change. CReSS is also rec-
ommended for site characterisation because spatial predictions from
this method showed fidelity to the simulated animal distributions.
Uncertainty in the predicted spatial distribution of animals was close
to its nominal (95% coverage) level.

This document contains a discussion about the issues involved
with the data collection process and in particular, the differences in
survey methods across platforms (e.g. boat, plane, vantage point).
Related platform-based issues about the observation process (and
associated imperfect detection) for the data collection, and the as-
sociated need to correct observed counts prior to input for analysis
are also outlined. A description of the methods comparison process
and the associated results then follow, along with recommenda-
tions based on the results contained therein. Two worked examples
(based on the recommended approach) provide not only a suggested
approach to analysis, but also offer signposts that consumers of
analyses can use to assess reliability of the results.

In addition to this guidance document we have produced a liter-
ature review related to statistical modelling of animal distribution
in the UK marine renewable industry. Based on the evaluation pre-
sented in the guidance document, we have also produced software
for the assessment of animal distribution.
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1 Introduction

This section is the introduction to the entire guidance document.
In addition to this guidance document, it is supplemented with a
literature review that can be found at

http://creem2.st-andrews.ac.uk/software/Literature_Review.pdf.

This guidance document focuses upon statistical issues related
to improving wildlife surveys in the measurement of distribution of
animals in areas of near-shore and off-shore renewable energy de-
velopment. Previous assessment of renewable energy development
impact has focused upon measuring differences in animal abun-
dance prior to and following development. This approach suffered
from the disadvantages of a) attributing any potential change to
development as the causal agent, b) failing to acknowledge other
forces that influence animal abundance and distribution and c) in-
sensitivity to more subtle changes in animal populations, e.g. shifts
in animal distribution to areas of habitat quality different than prior
to renewable development.

The statistical issues to be addressed in assessing animal pop-
ulation distribution and potential changes to those distributions
are subtle and complex. If methods for addressing such questions
were straightforward, then methods would be universally in use.
However, such methods are at the leading edge of statistical devel-
opment. Herein we describe these statistical methods, data needed
to apply the methods, comparison of competing analysis methods
based on simulation, diagnostic measures to apply and examine
for use of such methods, and guidelines for the proper use and in-
terpretation of spatial modelling methods. Finally we present an
appendix containing worked examples demonstrating the steps in
analysis and interpretation of impact assessment of off-shore and
near-shore renewables upon animal distribution.

http://www.creem2.st-and.ac.uk
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1.1 Common features of environmental monitoring and impact data

Defensible baseline characterisation and impact assessment relies
on sound statistical models which accommodate crucial features
of the input data. While all data sets have their peculiarities, some
features tend to persist across studies which make some mod-
elling methods more appropriate than others.

For example, most data sets collected for monitoring and assess-
ment purposes have an imperfect detection process, nonlinear
relationships with environmental covariates, complex spatial dis-
tributions and spatio-temporal correlation in the input data which
is unable to be explained by the model.

1.1.1 Imperfect detection

In the marine environment, there are often two reasons why the
animals counted by an observer are fewer than the animals present
at that location: either they are at the surface, and thus available
to be seen, but are overlooked because they are at distance from
the line (perception bias), or they are underwater and therefore
unavailable to be counted (availability bias).

Perception bias is likely to be an issue for both birds and ma-
rine mammals and tends to be worse for animals further from the
observers since animals are harder to see at distance. Failure to
account for this imperfect detection process (which returns counts
which are systematically too low) leaves the user to model relative
numbers of animals across time, at best, but may invalidate the
impact assessment process altogether. For instance, if the ability
to see animals at the surface differs substantially after impact (for
reasons unrelated to the impact) and fewer animals are seen, then
the user may be left to conclude an impact-related effect exists. For
this reason, some effort must be made to understand the detection
process and use this information to inflate the observed counts for
the animals which are missed.

For many platforms, availability bias is likely to be predom-
inantly a marine mammal issue and will not affect the bird ob-
servation process, however with faster survey speeds (e.g. aerial
digital surveys) this may also be an issue for some species of diving
seabirds since birds may be underwater when fast moving aircraft
passes over.

1.1.2 Nonlinear covariate relationships

Statistical models contain ‘covariates’ and in this setting these often
contain information collected directly from the local environment
(environmental covariates) or can include more abstract information
(e.g. spatial co-ordinates) thought to act as proxies for unavailable
biological/environmental information. The covariates that enter
statistical models are either categorical (classifier type) or continu-
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ous (numerical) in nature, the latter of which can be related to the
response in a variety of ways.

For example, the continuous covariates available for modelling
tend to have curved (i.e. nonlinear) rather than straight-line (i.e.
linear) relationships with the response/input data1 and these rela- 1 on the ‘link’ scale

tionships need to be accommodated by the model if the associated
model predictions are to be useful. These nonlinearities make some
modelling methods a poor choice (e.g. Generalized Linear Models;
GLMs (McCullagh and Nelder, 1989)) and nonlinear methods (e.g.
Generalized Additive Models; GAMs (Hastie and Tibshirani, 1990;
Wood, 2006)) a better option.

1.1.3 Complex spatial distributions

Seabird and marine mammal distributions are potentially very
complex and uneven in the marine environment. For example, the
spatial coverage of the survey effort might be patchy (and vary
across time) and animal numbers may be highly uneven across the
site – there may be some areas which are consistently popular with
the animals and some areas where animals are rarely (or never)
seen.

This unevenness in animal numbers across the survey area can
be difficult to approximate with more traditional smoother-based
statistical models which have a single flexibility setting which ap-
plies across the whole surface (e.g. GAMs). It might be of value to
employ ’spatially adaptive’ models that permit the surface flexi-
bility to be targeted into areas of greatest need (e.g. the Complex
Region Spatial Smoother; CReSS (Scott-Hayward et al., 2013)).

1.1.4 Spatio-temporal correlation

Baseline monitoring and assessment data are collected across space
and time (e.g. along transects from a boat/plane or sampled from
a grid from a vantage point) and observations close together in
time/space (e.g. consecutive points along transects) tend to be more
similar than observations distant in time. Further, the reasons for
this similarity are often absent from the model. For example prey
density may be a crucial driver of seabird distribution, but since
dynamic prey information is rarely available for input to the model
the ‘hotspots’ in some areas are likely to be unexplained by the
model. These left-over unexplained patterns violate an assumption
of some traditional modelling methods (residual independence)
which makes some modelling methods (e.g. GAMs) inappropriate
for data of this sort.

While the data are collected close together in space (e.g. along
transects) either near-shore or off-shore, the correlation in animal
numbers is likely to be predominantly temporal (rather than spa-
tial) in the marine environment. For example, high seabird numbers
in response to an abundance of prey in a particular transect on a
particular day are unlikely to persist across time since prey tend
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to move. In other circumstances, "landscape" level features such
as sand banks may constitute more predictable foraging sites and
hence induce spatial correlation.

This correlation along transects/within grid-cells needs to be
treated appropriately if model outputs are used for decision mak-
ing. If this (positive) correlation is ignored, the model outputs are
likely to ‘identify’ effects which aren’t genuine (e.g. lead us to con-
clude an impact-related effect is present, when it is not). For this
reason, modelling methods which permit correlation of this sort
are often more appropriate (e.g. Generalized Estimating Equations;
GEEs (Hardin and Hilbe, 2002) and Generalized Additive Mixed
Models; GAMMs (Brown and Prescott, 1999)) for these data.

1.2 Pantheon of guidance for offshore renewable impact assessment

Much of the guidance used in site characterisation for offshore re-
newable developments can be traced to the document published
almost 10 years ago by Camphuysen et al. (2004). Recently there
has been a proliferation of additional documents prepared for as-
sessing an increasing number of off-shore renewable sites around
the UK. Funded by the Centre for Environment Fisheries and Aqua-
culture Science (CEFAS) and the Marine Mammal Organisation
(MMO), a document is scheduled to be completed in Autumn 2013

which reviews post-consent monitoring information from off-shore
wind farm developments in relation to licence conditions.

Another document in draft form (Jackson and Whitfield, 2011)
attempts to synthesise a wide breadth of information regarding
data sources, study designs and survey methods used to assess
marine renewables impacts. None of these documents emphasise
analysis methods associated with measuring impacts. The doc-
ument we have written concentrates on the statistical modelling
approaches used to detect impacts of marine renewables.

2 Background

Estimating animal abundance via distance sampling (Buckland
et al., 2001) constitutes a two-stage estimation process. If sampling
is conducted by a method such that not all animals are seen inside
the truncation distance (the furthest perpendicular distance from
the transect line included in the analysis), then a model is used (via
fitting of a detection function) to infer the number of animals in the
covered region (the area within the truncation distance from the
transect).

Even for data collection methods where detection methods are
not susceptible to missing animals away from the transect, uncer-
tainty in animal abundance exists because of extrapolation from the
portion of the study area where sampling effort is exerted to por-
tions of the study area where sampling effort does not take place.

Design-based inference relies on the assumption that sampled
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portion of study area is similar to the unsampled portion of study
area. This is implemented through randomisation; coordinates of
the study area are drawn via some stochastic process such that
investigator intervention (judgement sampling) does not take place.

Design-based sampling designs require a property called "even
coverage" which is defined as every point in the study area is as
likely to be included in the sample as every other point. This is
accomplished by employing random sampling, or preferably sys-
tematic sampling with a random start. Systematic sampling ensures
that samples are not by chance clustered in some portion of the
study area.

Transect spacing relates to between-transect distances employed
in systematic sampling. The idea of making transects run paral-
lel to gradients in animal density (or habitat features that may be
proxies to animal density) is to cause variability in rates of ani-
mal encounter within transects to be large relative to variability
in encounter rates between transects. This is because variability in
encounter rate between transects is a measure of uniformity of an-
imal density within the sampled region. If there is little variability
in encounter rates between transects, then unsampled areas can
be predicted to have approximately the same rates of encounter as
the sampled transects. Variability in encounter rates between tran-
sects contributes to uncertainty in estimated density throughout
the study area. Design-based inference acknowledges the existence
of variability in encounter rates between transects but does not
attempt to explain the patterns in variability.

Distinctions between design-based and model-based modes of
inference in studies of animal abundance are drawn by Borchers
et al. (2002). Model-based inference presumes the relationship be-
tween the response variable and measured covariates in the sam-
pled region (e.g. animal density and water depth) holds in portions
of the study area not sampled. Spatial variability in animal densi-
ties is modelled through the use of spatially-explicit covariates.

There are three by-products of the process of modelling spatial
variability in densities. First, modelling may explain some of the
variability and consequently reduce the amount of unexplained
(residual) variation in densities. This may produce more precise
estimates of animal abundance. The second by-product is a mech-
anism whereby extrapolation from the sampled area to areas not
sampled can be made. The third by-product is insight into the po-
tential drivers that influence animal distribution patterns. It is this
third by-product that makes model-based inference the preferred
method for investigating consequences of renewable energy devel-
opment upon seabird and marine mammal populations. Distinc-
tions between design-based and model-based modes of inference in
studies of animal abundance are further discussed in Borchers et al.
(2002).

Examples of model-based methods of animal estimation include
Hedley and Buckland (2004) using an example of minke whales
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from the Southern Ocean, Royle et al. (2004) (terrestrial birds) and
more recently Johnson et al. (2010) (terrestrial plants).

While valuable, there are challenges associated with using
model-based inference procedures. These include unresolved
questions regarding the implementation of a sampling design.
While there is a potential liberation in that sampling effort does
not strictly need to be randomly allocated, the question remains
how should sampling effort be allocated when using model-based
inference? What criteria should be applied to best use available
sampling effort? This document discusses these issues in Section
9.1.

An important challenge associated with employing model-based
inference is the potential for the results to be wrong. Theory under-
pinning design-based inference shows that the answers produced
from design-based estimators are, on average and in most circum-
stances, unbiased. Unfortunately, there is no such guarantee for
model-based estimators. An axiom of statistics attributed to G.E.P.
Box is that "all models are wrong but some are useful." and since
the validity of model-based inference depends on a "correct" model,
model-based inference is subject to bias if the models used are in-
correctly specified. For this reason, the details of the modelling
approach adopted are crucial.

3 Data acquisition

Four different survey approaches have been developed by the ma-
rine renewable industry to record the at-sea numbers and distribu-
tions of seabirds: boat surveys, visual aerial surveys, digital aerial
surveys and land-based visual surveys or vantage point surveys.

This section provides a broad summary of the existing guidance
and associated reviews relating to these forms of data collection.
Also highlighted here are aspects of data collection that are of par-
ticular relevance to the data analysis methods described later in this
guidance document (section 4).

The protocols relating to boat and visual aerial surveys for bird
distributions at sea are well-established and largely standardised
across the off-shore windfarm industry by the adoption of method-
ologies outlined in Camphuysen et al. (2004), which was the result
of work funded by Collaborative Offshore Wind Research into
the Environment (COWRIE). This standardisation in approach is
highlighted in a forthcoming CEFAS/MMO-funded review which
addresses whether post-consent off-shore wind farm monitoring
in the UK meets the conditions set by the site specific Food and
Environment Protection Act (FEPA) licences (although the focus is
largely on England and Wales). MacLean et al. (2009) highlighted
that it can be unclear from looking at industry reports whether all
the guidelines are strictly followed due to insufficient detail being
presented, and stressed the need for this information to be pro-
vided. This lack of detailed information presents a challenge when
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assessing the extent to which field protocols have been adopted.
Draft guidance provided by Scottish Natural Heritage (SNH)
and Marine Scotland (Jackson and Whitfield, 2011) discussed the
data collection protocols relating to boat and visual aerial surveys
and suggested a number of minor revisions to Camphuysen et al.
(2004).

For digital aerial surveys, another COWRIE-funded project pro-
vided a review of these techniques and initial protocols with re-
spect to technical issues and survey design and analysis (Thaxter
and Burton, 2009). Jackson and Whitfield (2011) reviewed in brief
the field protocols relating to digital aerial surveys but did not pro-
vide any new recommendations or insights as their guidance was
based on work that was discussed in more detail by Thaxter and
Burton (2009).

Standardisation of vantage point (VP) methodology in the con-
text of the marine renewable industry has not yet taken place. Al-
though Jackson and Whitfield (2011) provided a number of recom-
mendations, it is not yet apparent whether the methods are being
adopted.

3.1 Marine mammal surveys

Much of this document will deal with data collection and analysis
for seabirds. However most of the analysis methods described can
also be applied to marine mammal data. However the collection
of marine mammal data may differ slightly because the frequency
with which marine mammals are detected may be much less than
seabirds. The methodology commonly employed for collecting
and recording marine mammal sightings is attributed to the Small
Cetaceans in the North Sea (SCANS) surveys conducted in 1994

and again in 2005. Because detectability of marine mammals is
imperfect, distance sampling methods are commonly employed and
consequently distances and angles are recorded to the sightings via
the use of thing such as angle boards, distances sticks, binocular
reticles and inclinometers. Protocols for collection of such data
for marine mammals is described by Hammond et al. (2013) with
subsequent references to Gillespie et al. (2010) for computerised
data recording systems and Gilles et al. (2009) for methodology
associated with aerial surveys. We allocate the remainder of this
data collection section to field protocols associated with seabird
sightings.

3.2 Boat surveys

Boat surveys (otherwise referred to as ship-based surveys) have to
date been the most commonly used census technique by the off-
shore wind farm (OWF) industry. The key advantages of boat sur-
veys compared to all types of aerial surveys include the following:
ships can be used to sample bio-physical data (e.g. temperature and
salinity) at the same time as bird data (the use of this information
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in analyses is discussed in section 4); they provide the opportunity
to collect additional information on the behaviour of the birds (e.g.
it is possible to distinguish between birds that are engaged in for-
aging flight as opposed to commuting flight or they can be used to
collect information on migration events); and the probability of de-
tecting birds that are diving is far higher, because any point on the
trackline is in view for longer due to the relatively slow travel speed
(Buckland et al., 2012). At one time the species classification suc-
cess was higher for boat surveys compared to aerial surveys but as
digital aerial surveys have improved, a comparison of classification
accuracy by these methods is warranted.

As outlined in Camphuysen et al. (2004) the methodology for
boat surveys is essentially a combination of several surveys which
are run concurrently: line transect methodology for birds sitting
on water; snapshot methodology for birds in flight and ad hoc
record of birds in flight (not considered further here as these do not
contribute to the estimates of at-sea numbers and distribution).

3.2.1 Line-transect methodology

For marine mammals accepted practice for gathering and recording
sighting data were developed in anticipation of the SCANS II (small
cetaceans in the North Sea) surveys conducted in 2005 (Hammond
et al., 2013).

As boats travel along pre-defined survey transect routes2, a 300m 2 a transect is a pre-defined path along
which counts or occurrences of an
object are made

wide band is defined to one side and ahead of the ship which is re-
garded as the spatial extent of the area to be surveyed. Birds on the
sea surface are more detectable when they are closer to the transect
line followed by the ship. To overcome the problem of decreasing
detectability of birds, as their distance from the trackline increases,
the transect strip width is subdivided into distance bands, effec-
tively defining strips perpendicular to the transect line. Camphuy-
sen et al. (2004) recommended the use of the following distance
bands: A = 0-50m, B = 50-100m; C = 100-200m, D = 200-300m and
E >300m (although records from the latter do not contribute to the
overall counts) and this appears to be universally used (MacLean
et al., 2009).

Corrected counts have been generated either by the use of pub-
lished species specific correction factors (e.g. Stone et al. (1995)) or
by the application of distance analysis (see Buckland et al. (2001)
for details). Detection functions are likely to vary by location for
a number of reasons; for instance, sites close to shore may more
commonly exhibit flat sea conditions with relatively high detectabil-
ity, whereas sites in more open sea may have greater swell and be
exposed to weather conditions which reduce detectability further
from the boat. Location-specific estimates of detectability from a
distance analysis are therefore preferred as they account for these
location-specific differences in detectability.

Observations of birds are allocated into set time intervals ranging
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from 1 minute to 10 minutes (depending on the required resolution
of the data) and the location of the boat is recorded at the start or
the mid-point of each interval. MacLean et al. (2009) highlighted
an off-shore development where surveyors had used an alternate
methodology of recording the exact timing of bird observations
rather than assigning them to a time interval. At high resolutions,
assigning a time to an observation could give false accuracy with
respect to the geographical location of the bird, unless the relative
bearing to the observer is also given.

Camphuysen et al. (2004) recommended that observers should
scan ahead using binoculars (as opposed to the default of detection
by naked eye) to pick up on diving birds before they are flushed
by the presence of the moving ship. This observation technique
appears to have been expanded by observers who look ahead for
seaducks (e.g. Lincs OWF – Centrica (2007)) and auks. It is impor-
tant however, to consider that scanning ahead a long distance may
detect birds which are technically in the next time interval, par-
ticularly if using short time intervals. These observations should
where appropriate be denoted as occurring in the subsequent timed
recording interval.

Jackson and Whitfield (2011) emphasised the need for surveyors
to place priority on the detection of birds in distance band A (0-
50m). One of the key assumptions of distance sampling is that all
birds on the transect line are detected and therefore all surveyors
should strive to meet this requirement.

3.2.2 Snapshot methodology

The snapshot methodology was developed to reduce the likelihood
of overestimating the number of birds in flight (Camphuysen et al.,
2004). In effect, the sampling procedure should be visualised as
setting up a series of contiguous boxes which fit within the 300m
transect width and observations of birds are allocated to individ-
ual boxes. To achieve this, the sampling frequency should take into
account the ship’s travelling speed (hence the distance travelled
between each snapshot count) and the distance ahead to which ob-
servations are made. For example, a snapshot sampling frequency
of 1 minute is based on the ship travelling at a speed of 9.7 knots
(which equates to 300m travelled every minute) and if the observer
looks ahead to a distance of 300m, the area encompassed by the
snapshot is a box of 300m x 300m. A common error is for the snap-
shot sampling frequency and the distance ahead to be scanned to
be determined regardless of how fast the ship is travelling.

MacLean et al. (2009) proposed that distance intervals for snap-
shot counts would be an improvement to the commonly used time
intervals. The advantage being any variation in ship speed (e.g. due
to the conditions of the wind, state of the tides or current direction)
would be explicitly encompassed in the estimate of the distance
covered. In theory it would be possible to change over from using
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a stopwatch to denote the times at which the snapshots should be
carried to a using an onboard GPS system and a portable receiver
which could be set up to flag up when the appropriate location
is reached. In terms of the analyses, however, effects are likely to
be minimal if a relatively short time interval is used (e.g. a ship
travelling at 9.7 knots will travel 300 metres in a 1 minute period).

For the snapshot methodology there need not be allocation of the
birds to distance bands (Camphuysen et al., 2004). Attempts to al-
locate birds in flight to distance bands are likely to violate distance
sampling assumptions, as the birds are moving (Buckland et al.,
2001) and observers concentrating on distance bands may also lead
to a greater number of errors in other recorded information such
as species or location. Ronconi and Burger (2009) call for develop-
ment of methods to overcome issues of bird movement in distance
sampling protocols. However, with current approaches, snapshot
counts should not allocate birds to distance bands. This assumes
that there are no issues of detectability for birds in flight within the
300m transect, which is generally regarded as a reasonable assump-
tion.

3.2.3 Collection of data on environmental covariates

In Camphuysen et al. (2004), it was suggested that the introduction
of an aquaflow (for the measurement of temperature, chlorophyll
and salinity) would improve cost effectiveness of the bird surveys
by having environmental data gathered by the survey vessel. There
has been no further guidance or recommendation in relation to this
aspect (e.g. no reference in the draft guidance provided by SNH
and Marine Scotland) and does not address the matter of needing
environmental data at all locations throughout the study area, not
merely along surveyed transects.

As number of seabirds and marine mammals fluctuate greatly at
any given location, it may be difficult to detect change in numbers
or distributions which may have occurred as a result of the pres-
ence of the wind farm development (Maclean et al. (2013), Lapeña
et al. (2011)). Despite this inherent variability, there is an increasing
body of work which demonstrates that foraging, and even migra-
tory behaviour of marine birds and mammals, can be highly pre-
dictable over tidal cycles and seasonal currents (Scott et al., 2013).
The reason being that these underlying physical processes can often
explain the variation in primary production or plankton activity,
which in turn attracts potential prey items for marine predators
such as seabirds and mammals. For example, variation in spatial
and temporal distributions of foraging seabirds has been signifi-
cantly correlated with tidal processes and/or interactions with the
topography of the seafloor which can be manifested as relatively
high chlorophyll levels or relatively stratified waters (e.g. Embling
et al. (2012); Scott et al. (2013)).

Relationships between biophysical features and the numbers and
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distribution of marine predators are relatively difficult to tease out
without a survey design which repeatedly samples the same area
to control for variation in additional key factors e.g. different stages
of the tidal cycle (Cox et al., 2013). At present, renewable industry
development locations are typically surveyed on a monthly basis.

It is also worth working noting that the focus of the scientific
studies discussed above has been to explain the distributions of
birds which are actively foraging (see Camphuysen and Garthe
(2004) for coding) rather than the distributions of all birds present
in the study area, as is required for the impact assessment process
for the renewable industry. Nevertheless, what is needed is a better
understanding of the mechanistic processes which determine the
biological and physical variables which in turn determine the rel-
ative amounts of prey available and will therefore reliably predict
numbers and distribution of seabirds (Scott, in press). The inclusion
of temporally varying covariates rather than solely static covariates
(ideally environmental data that is collected synoptically to the tim-
ing of the bird surveys) would greatly help in this respect. Further
discussion is given in section 9.2 in relation to covariates to be used
in the modelling.

3.2.4 Instantaneous data recording

Camphuysen et al. (2004) stated that there should be no immediate
computerisation of data during the surveys in order to maximise
attention on detection, identification and recording. However, a
number of software packages which allow the digitisation of obser-
vations from the ship’s platform on to a laptop or tablet, without
taking the observers’ attention from bird detection have now been
developed, and are in current use. Depending on the type of pro-
gram used, the geographic location of the ship is derived directly
from the ship’s system communication port (and therefore addi-
tional information on other parameters wind speed, wind direction
and surface water temperature can be transferred) or from an in-
ternal GPS within the computer itself. There are several major
benefits to digital inputting of data which bypasses the need for
paper forms including: the time spent inputting data is reduced
as the recording of the time of observation is automated; relative
survey effort is recorded by default; minor typographic errors are
highly unlikely and; data verification tends to be quicker. However
consideration would need to be given to issues over how to back up
data sets and ensuring sufficient battery life.

3.2.5 Accreditation

Camphuysen et al. (2004) stated that observers must be trained and
have adequate identification skills. More recently in the MS/SNH
guidance, Jackson and Whitfield (2011) recommended that all sur-
veyors should be ESAS (European Seabirds at Sea) accredited and
have over 100 hours survey time experience or at least be paired
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with an accredited surveyor until the minimum time is achieved.
Although the rationale for the minimum required amount of sur-
vey hours experience is not given, the recommendation that all
surveyors should be formally assessed is sensible. Such formal ac-
creditation is likely to ensure further standardisation in approaches
and Joint Nature Conservation Committee (JNCC), who oversee
the ESAS database, are now currently in the process of preparing
formal guidance for field protocols and how they should be ap-
plied. It should be noted that although ESAS methods also include
the recording of mammals, this does not mean that the need for
separate marine mammal observer who carries out the appropriate
species specific survey methodology is redundant.

3.3 Visual aerial surveys

In comparison to boat-based surveys, aerial survey methods are
relatively quick to carry out and are a cheaper option to cover the
same area (Buckland et al., 2012). Given their capability for cover-
ing large areas in a short period of time they reduce the potential
for under or over recording birds that may move around within
the study area within the survey period. Another benefit of aerial
surveys is that aeroplanes do not attract certain species of seabirds,
which can be a particular problem for the boat surveys (e.g. Spear
et al. (2004)). Whilst boat surveys also suffer from potential biases
associated birds being disturbed by the presence of vessels (e.g.
Borberg et al. (2005), Schwemmer et al. (2012)), disturbance issues
are far less acute for visual aerial surveys, though may still exist
(Buckland et al., 2012).

Camphuysen et al. (2004) acknowledged that there was relatively
little published in this particular area at the time of their review
and stated that the methods that they proposed were largely deriva-
tive of those used by the Danish National Environment Research
Institute (NERI). The method for visual aerial surveys is based
on line transect methodology and is similar to boat surveys since
detectability from the track line of the aeroplane decreases with
increasing perpendicular distance. However unlike boat surveys
the distance bands used are not standardized for all aerial surveys,
in part as flight heights may vary. This is not a problem as long as
distance sampling techniques are applied appropriately. Some sur-
veys have been carried out using strip transect methodology, which
assumes that all birds within a given distance are detected and this
assumption is likely to be violated for any reasonable size of strip
width.

3.4 Digital aerial surveys

Digital aerial surveys, to a large extent, have superseded visual
aerial surveys, in the UK at least, and are also beginning to be used
elsewhere (e.g. in the U.S.A.). Visual aerial surveys have not been
possible at a number of UK OWF sites for the post-construction
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period due to the flight height restrictions and the potential risk of
collision with turbines. Digital surveys offer a number of advan-
tages including: aircraft fly higher so they are less likely to disturb
birds; recording is less subject to the vagaries of human error since
a permanent record is available for independent verification at a
later stage and detection rates in the transects are considered to be
100% which negates the need for the allocation of individuals to
distance bands and correction of count data at the analysis stage.

Further consideration of the relative merits of visual and digital
aerial (still and video-based) surveys and how best to compare esti-
mates obtained from different approaches is provided in Buckland
et al. (2012). Whilst they reported that higher abundance estimates
were produced using digital aerial rather than visual aerial surveys,
they were unable to recommend either the use of still or video-
based surveys in favour of the other. They stated that the relative
precision of the estimates were largely driven by the proportion of
the survey area which is surveyed and the relative spacing of the
sampling units.

There have been notable advancements in digital aerial survey
technology since the survey work which featured in Buckland et al.
(2012) and Thaxter and Burton (2009). Considerable improvements
in the ability to identify individuals to the species level have been
achieved, which was previously a major weakness of the digital
aerial surveys. Similarly, the strip width of the cameras used by
digital surveys has previously been limited, meaning that, for a
given number of transects, coverage of the development area would
be less than for visual aerial or boat surveys. Because of rapid de-
velopments in digital technology in recent years, there is a need for
updated best practice guidance.

3.5 Vantage point surveys

Vantage point surveys (VPs) collectively describe a number of
methods for recording observational data from the area of inter-
est from a fixed elevated position, generally on-shore. These types
of surveys, when used in the appropriate context, have the follow-
ing advantages; they are relatively simple to carry out and; VPs do
not necessitate the use of relatively expensive of survey ships or
aeroplanes.

Jackson and Whitfield (2011) recommended the use of VPs for
relatively small sites that are located within 1.5km of the coast
(although there was no rationale provided for this distance). In
more general terms, the use of VPs is likely to be best suited to
situations when the area of interest can be scanned in its entirety
from a single elevated location. However, even from the elevated
position observers ought to recognise diminution in detectability as
function of distance from observation point.

Although there appears to be a lack of standardized data collec-
tion protocols for VPs in the context of the marine renewable indus-
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try, Jackson and Whitfield (2011) argued that the methods should
be reasonably flexible to allow adaptation to the specific monitoring
requirements of the site. They use the term Bird Snapshot Scans
(BSS) to describe the method best suited to provide an assessment
of the numbers and distribution of birds using the site. In brief,
the observer is required to scan in a single sweep a visible arc of
sea and record all observations of birds seen on the water and in
flight which are actively using the area (birds which are commuting
through are not considered as part of the total count and are best
counted using a separate methodology which they referred to as
Flying Bird Watches).

Jackson and Whitfield (2011) argued in their guidance that dis-
tance sampling approaches could not be used to correct for de-
tection bias associated with VPs carried out in the context of the
off-shore environment. Therefore their methodology did not in-
clude the recording of any measure of distance relative to the ob-
servers. Although it is very difficult to separate the underlying
distribution of animals which are unlikely to be uniformly dis-
tributed (and maybe influenced by oceanographic factors such as
tides, currents or biophysical factors) from imperfect detection,
there are methods which can cope with this (e.g. Cox et al. (2013),
by collecting information on the radial distance and the angle for
each detected animal it is possible to both estimate a detection func-
tion and animal densities; see literature review: http://creem2.st-
andrews.ac.uk/software/Literature_Review.pdf). Methods that
adjust for imperfect detectability should be employed to prevent
confounding of diminished animal detection at distance from the
vantage point with possible changes in animal density.
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4 Statistical modelling methods undergoing evaluation

The utility of a statistical modelling method depends on its ability
to characterise the average behaviour of the site (either as a sin-
gle abundance estimate or as geo-referenced predictions) and its
ability to provide realistic uncertainty about model predictions
(including 95% confidence intervals).

For instance, it is insufficient for a modelling method to provide
good (geo-referenced) predictions if the uncertainty reported
about these predictions is unrealistic. This is of particular concern
when the model portrays over-confidence in model predictions
and therefore natural (and small) fluctuations in animal num-
bers are mistaken for genuine changes in animal numbers. The
converse situation is also a problem (when uncertainty is over-
estimated) since genuine changes in animal numbers over time
can be mistaken for natural changes and therefore overlooked.

It is also crucial for a modelling method in this setting to identify
which covariates have a genuine relationship with the response,
particularly if pre and post impact comparisons are of interest.
For example, falsely identifying an impact effect (e.g. an av-
erage increase or decrease, or as a redistribution) might have
serious consequences for the operation of marine renewable de-
velopments, while overlooking a genuine impact effect is also a
problem for the species in focus.

For these reasons, the ability of the methods undergoing evalua-
tion to characterise site behaviour and provide realistic measures
of precision (e.g. 95% confidence intervals) about site behaviour
will be considered.

The modelling methods chosen for evaluation and comparison
in this document included those already being used by the marine
renewables industry to analyse baseline monitoring and assessment
data and modelling methods from the wider science base consid-
ered to be appropriate for data of this kind. Literature in this area
was extensively reviewed and this report can be found at:

http://creem2.st-andrews.ac.uk/software/Literature_Review.pdf.
For brevity, the description of the statistical modelling methods
considered here is brief and for more details, the reader is referred
to relevant literature in each section.

4.1 Generalized Additive Models (GAMs)

GAMs respect the broad nature of the input data (e.g. animal
counts) which, for example, ensures model predictions are within
plausible limits. For count data this means predicted animal num-
bers are non-negative and for proportional/presence-absence data
predictions must lie between 0 and 1. The limits on the predicted
values depend on the so-called ‘link’ function employed and there
are logical choices for different types of input data (e.g. counts and
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presence/absence data). GAMs are also flexible by permitting the
covariates to have nonlinear relationships with the response of in-
terest (even on the link scale). This can be very important if the
covariate relationships are to be described accurately in monitoring
and impact assessment data. For details on GAMs, good references
are Hastie and Tibshirani (1990) and Wood (2006).

Consider the model through an example in which animal counts
are collected from a plane along transect i (where i = 1, ..s) and
transects are divided into segments (where j = 1, ...J) which are
visited at time point t (where t = 1, ...ni). In this case, the response
data yijt are modelled using a Poisson distribution with mean µijt.
This mean is modelled using Season (with 4 levels), a smooth func-
tion of Depth and the spatial co-ordinates (XPos and YPos).

Yijt ∼Poisson(µijt)

µijt = exp(β0 + β1Season2ijt + β2Season3ijt + β3Season4ijt+

β4 Impactijt + s1(Depthijt) + s2(XPosijt, YPosijt))

(1)

The intercept (β0) includes the baseline season (1) while the re-
maining levels of Season (2, 3 and 4) have associated coefficients
β1, β2, β3. The effect of impact (as affecting average numbers over-
all) is modelled here using β4 while s1 and s2 represent smooth
functions of Depth and the spatial terms respectively.

Note, s2 relates to an interaction term between XPos and YPos
which permits the relationship between the XPos coordinate and
the response to change with the YPos coordinate. The linear pre-
dictor (β0 + .....s2(XPosijt, YPosijt)) is fitted inside the exponential
function (exp) to ensure the predicted numbers of animals cannot
be negative. Formally, a Poisson-based GAM with a log-link func-
tion is described here.

Typically the GAM described is fitted using penalized splines
for the one dimensional smooth terms (e.g. s1) and employs MGCV
(Wood (2003), R Development Core Team (2009)) based model
selection to choose the flexibility of the smooth. Additionally, the
two dimensional smooth terms (e.g. s2) are typically implemented
using thin-plate splines with a global smoothing parameter also
chosen using MGCV.

GAMs are population average models which relate to, and return
predictions for, the average of a population. So in this example,
given some values for Season, Impact, Depth, and spatial location
the GAM returns an expected count for the population at that loca-
tion.

GAMs (e.g Equation 1) are typically fitted using Maximum Like-
lihood (ML) which returns coefficients and associated estimates
of uncertainty about these coefficients. These estimates of uncer-
tainty are then used to calculate p-values for model covariates and
very often 95% confidence intervals about parameters and geo-
referenced model predictions. Conclusions about model covariates
(and their potential relationship with animal numbers) are then



statistical modelling of seabird and cetacean data: guidance document 21

often based on the p-values returned.
GAM-based p-values are calculated assuming there is no spatio-

temporal correlation in model residuals (see page 7). This is a prob-
lem if there are patterns in the data which are unexplained by the
model (which is common due to missing covariates, for example)
since this can result in overconfidence in model results (and p-
values which are too small) and potentially false identification of
impact-related effects. A wider discussion about model selection
can be found in section 5.3.1.

4.2 Generalized Additive Mixed Models (GAMMs)

Generalized Additive Mixed Models (GAMMs; Brown and Prescott
(1999)) are an extension of GAMs which permit both flexible co-
variate relationships and spatio-temporal correlation within some
user-specified blocks/panels (e.g. transects).

GAMMs accommodate positive correlation within blocks by
allowing the blocks to attract values of a ‘random effect’. These
random effect predictions describe the way the blocks differ from
some ’population average’ coefficient. For example, baseline levels
(e.g. based on the intercept coefficient) for each transect might be
assumed to vary from each other and from the population average
baseline in a particular way:

Yijt ∼Poisson(µijt)

µijt = exp(β0 + ui + β1Season2ijt + β2Season3ijt + β3Season4ijt+

β4 Impactijt + s1(Depthijt) + s2(XPosijt, YPosijt))
(2)

where ui ∼ Normal(0, σ2
u) and all other terms are as described

previously.
The inclusion of random effects in these models require assump-

tions to be made about the way the blocks (e.g. transects) vary from
the population average (and with each other). Almost invariably,
these terms are typically assumed to be normally distributed about
the population mean parameter with some variance which is esti-
mated from the data. For more complicated models with multiple
random effects, the normal distribution is specified to have at least
two dimensions (e.g. multivariate normal) and allow the random
effects specified to vary with each other. This extra complexity can
be an issue for estimation however when many random effects are
specified.

In contrast to GAMs, GAMMs are ’so-called’ conditional models
which return predictions which relate more closely to the average
block/panel (e.g. transect). So, given values for Season, Impact,
Depth, and spatial location the GAMM returns the expected num-
ber of animals for something akin to the ‘average’ transect.

While this might appear to be a detail, the user must aver-
age predictions for a population of transects in order to obtain
predictions which are in line with population averaged model
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(such as GAMs). Additionally, if predictions to a grid based on
blocks/transects not visited are required (and thus predictions for
the random intercept (ûi in Equation 2) for these transects are not
available) the user must undertake some kind of post-processing to
obtain predictions under the model.

Fortunately, this post-processing can easily be achieved by sam-
pling ‘transect coefficients’ from the (multivariate) normal distribu-
tion (with mean zero and estimated variance) and averaging over
model predictions obtained for the sampled population of transects.
However like any model, the quality of these model predictions and
the associated uncertainty about the parameter estimates depends
on how valid the model assumptions are. For instance, if the tran-
sect level coefficients (random effects) are not well described by a
normal distribution then the model predictions obtained in this way
will be systematically too high or too low (and thus biased), and
the random effects assumption is very difficult to check in practice.
Unfortunately, incorrect random effects specification can also af-
fect the quality of the uncertainty about the coefficients which can
invalidate model p-values.

Model fitting for GAMMs usually involves, ML or Penalized
Quasi-Likelihood (PQL) depending on model specification (e.g. if a
dispersion parameter requires estimation) and choosing the terms
to include in a model either involves fit criteria based on these
fitting engines or p-values returned by the model. Choosing terms
for GAMMs is discussed in section 5.3.1.

4.3 Complex Region Spatial Smoother (CReSS)

The CReSS model appears similar to the GAM, however the smooth-
ing methods which underpin CReSS can differ greatly from the
GAM implementation (Scott-Hayward et al., 2013). Specifically, un-
der the CReSS model described here, the one dimensional smooth
term (e.g. s3) is implemented using quadratic B-splines with flexi-
bility chosen using the Spatially Adaptive Local Smoothing Algo-
rithm (SALSA) model selection (Walker et al., 2010). Additionally,
the two dimensional smooth term (e.g. s4) differs from the GAM
implementation and uses radial exponential basis functions with
flexibility also targeted using SALSA. This approach can return
similar results to GAMs when the underlying surface is uniformly
smooth but can return very different results when the flexibility
required varies a great deal across the surface (Scott-Hayward et al.,
2013).

Yijt ∼Poisson(µijt)

µijt = exp(β0 + β1Season2ijt + β2Season3ijt + β3Season4ijt+

β4 Impactijt + s3(Depthijt) + s4(XPosijt, YPosijt))

(3)

The starting point for SALSA-based model selection involves dis-
tributing a specified number of knots approximately evenly across
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the covariate range (or spatial surface) to fill the range/space and
adaptively move these knot locations to areas requiring the flexi-
bility. These moves are either large or small depending on where
in the covariate range/spatial surface the largest residuals are lo-
cated, and if the moves being considered improve the fit statistic of
interest (e.g. BIC).

While the smooth terms can produce relationships which are
highly nonlinear on the link scale, the smoother-based terms are
linear in their parameters which means a Generalized Estimating
Equation (GEE; Hardin and Hilbe (2002)) fitting framework can be
employed to provide coefficients and estimates of precision. GEEs
permit correlation within panels/blocks and the type of correlation
structure can either be chosen in advance by the user or the residu-
als used more directly; for example, empirical ‘robust’ estimates of
variance can be used to return the uncertainty about model coeffi-
cients and associated predictions.

Model fitting for CReSS-based models can involve, ML, QL or
GEEs depending on model specification (e.g. if a dispersion pa-
rameter requires estimation and/or temporal correlation is present
in model residuals). Therefore, choosing the terms to include in a
model either involves fit criteria based on these fitting engines or
p-values returned by the model. This is discussed in more detail in
section 5.3.1.

4.4 Methods chosen for comparison

An extensive review of the literature revealed only a small number
of statistical modelling methods have been used for data of this
sort, however some readers may note that regression kriging (which
combines a deterministic (regression) model to estimate the global
trend, with a stochastic component; (Hengl, 2007)) is not considered
here. The reasons for this are described in the literature review,
however in summary, only a partial comparison would have been
possible (at best). For instance, while this method can accommodate
spatial autocorrelation (as a combined process) the model selection
tools are unadjusted for this correlation. Specifically, the associated
GAM-based p-values are likely to be too small (and thus are likely
to identify impact effects which are not genuine) and GAM-based
information criterion are also not immune to residual correlation
and are likely to result in overly-complex models (see the GAM
results in section 6.4).

There are also different ways to implement this combined ap-
proach which would make a partial comparison problematic in the
absence of off-the-shelf code with associated default specifications
(or detailed guidance about alternatives). For instance, in some im-
plementations, if the GAM fit measure was below some user-chosen
value then a model would not be fitted at all and the raw/input
data (rather than residuals) would undergo kriging-based interpola-
tion instead. Decisions like this, and those related to the resolution
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of the grid, or the nature of the spatial correlation chosen for the
stochastic component (which often involves ‘expert judgment’) are
likely to vary considerably across users.

It is also worth noting here that while GAMs were included here
for comparison with GAMMs and CReSS, GAMs would normally
have been ruled out for use on these data purely on the basis they
do not permit residual correlation. In this case, GAMs were con-
sidered for the comparison due to their widespread use by the
renewables industry.

5 The methods comparison process

5.1 Data generation

The data for the comparison process were generated based on
data collected near-shore and off-shore. The near-shore data were
based on data collected from a single vantage point while the off-
shore data was generated based on aerial survey data collected
from pre-defined transects. Three scenarios for near-shore and
off-shore were manufactured:

1. no change post-impact

2. a post-impact decrease of 30%, on average, in animal numbers

3. a redistribution post-impact from the impact site into areas
already popular with the animals. There was no change in
abundance for this scenario.

To ensure no method was favoured by the manufacturing process
two smoother-based methods were used to generate the data and
to look at methodological performance in the long run, 100 data
sets were generated for each scenario. Specifically, both GAMs and
CReSS were used to supply the details for the smooth functions to
generate the simulated data, since the smoothing approach used for
the GAMMs is similar in nature to GAMs. For each of the off-shore
and near-shore scenarios, three impact types were simulated and
in each case these were either GAM-based or CReSS-based which
resulted in 12 data set types, each with 100 realisations. All 1200

data sets included within block correlation and over-dispersion.

5.1.1 Off-shore scenarios

The data were assumed to come from an overdispersed Poisson
distribution with mean µijt (for transect i, segment j at time t) and
dispersion parameter, φ. The mean of the distribution was assumed
to be related to model terms related to season, water depth and a
smooth function of the spatial co-ordinates (XPos and YPos). The
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coefficients for these terms describing the covariate relationships
were obtained by fitting the GAM-based and CReSS-based models
to real data.

For the off-shore scenarios, three models were used to manufac-
ture the data:

1. Model I: No change post-impact

Model I describes a ‘no change’ scenario post impact. Animal
numbers recorded throughout the whole survey period (pre and
post impact) are described only using season, water depth and the
spatial co-ordinates.

There is no ‘impact’ effect built into the model (or alternatively
any impact terms have zero valued coefficients).

In summary, the process generating the data was the same pre
and post impact and the covariate values were also the same pre
and post impact. This can be written as:

Yijt ∼Poisson(µijt, φ)

µijt = exp(β0 + β1Season2ijt + β2Season3ijt + β3Season4ijt+

+ s1(Depthijt) + s2(XPosijt, YPosijt))

(4)

Here, yijt describes animal counts collected on segment j (j =

1, ..., J), transect i (i = 1, ...s) at time point t (t = 1, ...ni) and the
number of observations per transect can differ across transects.
Additionally, β0 represents the intercept term (which ‘applies’
when Season = 1 and when Depth, and the XPos & YPos co-
ordinates are all zero).

Season2ijt, Season3ijt and Seasion4ijt are ‘dummy’ variables
which are either effectively present or absent from the model
depending on the season of interest. For instance, if the base-
line season (1) is of interest then Season2ijt = 0, Season3ijt = 0
and Season44ijt = 0. However if season ‘3’ is of interest then
Season2ijt = 0, Season3ijt = 1 and Season4ijt = 0. β1, ..., β3 are
coefficients which describe the difference between Season 1 and
Seasons 2, 3 and 4 respectively.

The smooth term for water depth, s1(Depthijt), describes how
the response responds to changing values of water depth and
the spatial term s2(XPosijt, YPosijt) is a two-dimensional smooth
spatial surface which involves the XPos and YPos co-ordinates in
a flexible way.

The smooth term for depth was generated in two ways to avoid
favouring any particular approach at the evaluation stage. Specif-
ically, GAMs and CReSS were used to generate the depth rela-
tionship, however in practice the covariate relationships were
very similar across the two approaches (Figure 1).
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(a) (b)

Figure 1: Depth relationships
for the GAM (a) and CReSS (b)
generated scenarios.

2. Model II: Post-impact decrease

Model II describes a ‘decrease’ scenario post impact. Animal
numbers recorded throughout the whole survey period (pre and
post impact) are described using season, water depth, the spa-
tial co-ordinates and impact. There is a decrease ‘impact’ effect
built into the model to induce a 30% decrease overall in animal
numbers (Figure 2).

Model II includes the terms in Model I with an additional ‘Im-
pact’ coefficient (β4) to describe a 30% decrease in animal num-
bers pre and post impact:

Yijt ∼Poisson(µijt, φ)

µijt = exp(β0 + β1Season2ijt + β2Season3ijt + β3Season4ijt+

β4 Impactijt + s1(Depthijt) + s2(XPosijt, YPosijt))

(5)

Here, β4 is an ‘impact’ coefficient and pre-impact observa-
tions have Impact = 0 and post-impact observations have
Impactijt = 1. All other terms are as described for Model I. A
spatial representation of the surfaces generated under the two
smoothing approaches are shown in Figures 2 and 3 (page 27).
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Figure 2: Underlying GAM-
generated (smooth) surface
pre and post impact for the
decrease post-impact off-shore
scenario. The surface on the
left is pre-impact (baseline
data) while the right-hand sur-
face is post impact. The X and
Y axes are in UTMs.

Figure 3: Underlying CReSS-
generated (smooth) surface
pre and post impact for the
decrease post-impact off-shore
scenario. The surface on the
left is pre-impact (baseline
data) while the right-hand sur-
face is post impact. The X and
Y axes are in UTMs.
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3. Model III: Post-impact redistribution

Model III describes a ‘redistribution’ scenario post impact. Ani-
mal numbers recorded throughout the whole survey period (pre
and post impact) are described using season, water depth, and a
spatial relationship with animal numbers which differs before and
after impact.

There is no overall change in animal numbers pre and post im-
pact.

Model III extends Model II by including a redistribution term
post impact. This redistribution term is implemented using an
interaction effect between the spatial element and the ‘Impact’
factor term (s3(XPosijt, YPosijt)Impactijt):

Yijt ∼Poisson(µijt, φ)

µijt = exp(β0 + β1Season2ijt + β2Season3ijt + β3Season4ijt+

β4 Impactijt + s1(Depthijt)+

s2(XPosijt, YPosijt) + s3(XPosijt, YPosijt)Impactijt)

(6)

This interaction term attracts coefficients describing the differ-
ence between the spatial surface pre (s2(XPosijt, YPosijt)) and
post s3(XPosijt, YPosijt)Impactijt) impact. All other terms are as
described for Model I and II.

For the redistribution, a radial decrease was applied centrally
to the impact region and a concurrent radial increase in an area
popular with the animals pre-impact (e.g. Figures 4 and 5 for the
GAM and CReSS generated surfaces respectively, page 29). The
pre and post impact differences in the GAM and CReSS surfaces
are shown in Figures 6 and 7 respectively (page 30).

The pre and post impact surfaces (and thus any differences)
are very similar based on either the GAM or CReSS generation
(pages 29 and 30).
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Figure 4: Underlying GAM-
generated (smooth) surface
pre and post impact for the
redistribution post-impact off-
shore scenario. The surface on
the left is pre-impact (baseline
data) while the right-hand sur-
face is post impact. The grey
asterisk represents the centre
of the impact and the black
triangle represents the centre
of the site for the redistribution
post impact.

Figure 5: Underlying CReSS-
generated (smooth) surface
pre and post impact for the
redistribution post-impact off-
shore scenario. The surface on
the left is pre-impact (baseline
data) while the right-hand sur-
face is post impact. The grey
asterisk represents the centre
of the impact and the black
triangle represents the centre
of the site for the redistribution
post impact.
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Figure 6: Difference be-
tween the underlying GAM-
generated (smooth) surfaces
pre and post impact for the
redistribution post-impact
off-shore scenario. The blue
colour represents a post-impact
decrease, while the red indi-
cates a post impact increase.
The grey colour indicates no
change.

Figure 7: Difference be-
tween the underlying CReSS-
generated (smooth) surfaces
pre and post impact for the
redistribution post-impact
off-shore scenario. The blue
colour represents a post-impact
decrease, while the red indi-
cates a post impact increase.
The grey colour indicates no
change.
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5.1.2 Near-shore scenarios

The data manufacturing process was very similar as that used to
generate the off-shore data however, tide state (rather than season)
and observation hour (rather than water depth) were used as co-
variates. For the near-shore scenarios, the data are collected over
time from a predefined set of grid locations, on different days and
different time points, and so yijt represents the count associated
with the i-th grid location, on the j-th day at time t.

1. Model I: No change post-impact

Model I describes a ‘no change’ scenario post impact. Animal
numbers recorded throughout the whole survey period (pre and
post impact) are described only using tide state, observation hour
and the spatial co-ordinates.

There is no ‘impact’ effect built into the model (or alternatively
any impact terms have zero valued coefficients).

In summary, the process generating the data was the same pre
and post impact and the covariate values were also the same pre
and post impact. This can be written as:

Yijt ∼Poisson(µijt, φ)

µijt = exp(β0 + β1FloodEbb2ijt + β2FloodEbb3ijt

+ s1(Hourijt) + s2(XPosijt, YPosijt))

(7)

Here, yijt is as described above, β0 represents the intercept term
(which ‘applies’ when FloodEbb=1 and when Hour, XPos,
YPos co-ordinates are all zero). Additionally, FloodEbb2ijt and
FloodEbb3ijt are ‘dummy’ variables which are either switched
on or off depending on the state of the tide. If the baseline
tide (FloodEbb = 1) is of interest then FloodEbb2ijt = 0 and
FloodEbb3ijt = 0. However if FloodEbb ‘3’ is of interest then
FloodEbb2ijt = 0. β1 and β2 are coefficients which describe the
difference when FloodEbb=1 and FloodEbb=2 respectively.

The smooth term for observation hour, s1(Hourijt), describes
how the response changes throughout the day (Figure 8) and
the spatial term s2(XPosijt, YPosijt) is a two-dimensional smooth
spatial surface which involves the XPos and YPos co-ordinates in
a flexible way.
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(a) (b)

Figure 8: Observation hour
relationships for the GAM (a)
and CReSS (b) generated data.

2. Model II: Post-impact decrease

Model II describes a ‘decrease’ scenario post impact. Here, ani-
mal numbers recorded throughout the whole survey period (pre
and post impact) are described using tide state, observation hour,
the spatial co-ordinates and impact. There is a decrease ‘impact’
effect built into the model to induce a 30% decrease in animal
numbers post impact (Figure 9).

Model II includes the terms in Model I with an additional ‘Im-
pact’ coefficient (β3) to result in a 30% decrease in animal num-
bers post impact:

Yijt ∼Poisson(µijt, φ)

µijt = exp(β0 + β1FloodEbb2ijt + β2FloodEbb3ijt + β3 Impactijt

+ s1(Hourijt) + s2(XPosijt, YPosijt))
(8)

Here, β3 is an ‘impact’ coefficient and pre-impact has Impactijt =

0 and post-impact has Impactijt = 1. All other terms are as
described for Model I.

The pre and post impact surfaces for the near shore scenarios
differ more across GAM and CReSS generation than for the off-
shore scenarios – there are increased numbers at distance from
the observation point in the CReSS manufactured data (Figures 9

and 10; page 33).
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Figure 9: Underlying GAM-
generated (smooth) surface
pre and post impact for the
decrease post-impact near-
shore scenario. The surface on
the left is pre-impact (baseline
data) while the right-hand
surface is post impact.

Figure 10: Underlying CReSS-
generated (smooth) surface
pre and post impact for the
decrease post-impact near-
shore scenario. The surface on
the left is pre-impact (baseline
data) while the right-hand
surface is post impact.
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3. Model III: Post-impact redistribution

Model III describes a ‘redistribution’ scenario post impact. Ani-
mal numbers recorded throughout the whole survey period (pre
and post impact) are described using tide state, observation hour,
and a spatial relationship with animal numbers which differs
before and after impact.

There is no overall change in animal numbers pre and post im-
pact.

Model III extends Model II by including a redistribution term
post impact. This redistribution term is implemented using an
interaction effect between the spatial element and the ‘Impact’
factor term (s3(XPosijt, YPosijt)Impactijt):

Yijt ∼Poisson(µijt, φ)

µijt = exp(β0 + β1FloodEbb2ijt + β2FloodEbb3ijt + β3 Impactijt

+ s1(Hourijt) + s2(XPosijt, YPosijt) + s3(XPosijt, YPosijt)Impactijt))
(9)

This interaction term (s3(XPosijt, YPosijt)Impactijt)) attracts
coefficients describing the difference between the spatial surface
pre and post impact. All other terms are as described for Model I
and II.

For the redistribution, a radial decrease was applied centrally
to the impact region and a concurrent radial increase in an area
popular with the animals pre-impact (Figures 11– 14, pages 35 &
36).
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Figure 11: Underlying GAM-
generated (smooth) surface
pre and post impact for the
redistribution post-impact
near-shore scenario. The sur-
face on the left is pre-impact
(baseline data) while the right-
hand surface is post impact.
The solid grey circle represents
the vantage point, the grey
asterisk represents the centre
of the impact and the grey
triangle represents the centre
of the site for the redistribution
post impact.

Figure 12: Underlying CReSS-
generated (smooth) surface
pre and post impact for the
redistribution post-impact
near-shore scenario. The sur-
face on the left is pre-impact
(baseline data) while the right-
hand surface is post impact.
The solid grey circle represents
the vantage point, the grey
asterisk represents the centre
of the impact and the grey
triangle represents the centre
of the site for the redistribution
post impact.
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Figure 13: Difference be-
tween the underlying GAM-
generated (smooth) surfaces
pre and post impact for the de-
crease post-impact near-shore
scenario. The blue colour rep-
resents a post-impact decrease,
while the red indicates a post
impact increase. The grey
colour indicates no change.

Figure 14: Difference be-
tween the underlying GAM-
generated (smooth) surfaces
pre and post impact for the de-
crease post-impact near-shore
scenario. The blue colour rep-
resents a post-impact decrease,
while the red indicates a post
impact increase. The grey
colour indicates no change.
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5.1.3 Data generation details

Under GAM and CReSS based generation for the off-shore scenar-
ios, 7,025 and 6,992 animals were present before impact (across the
12 months) respectively. For the decrease scenarios, 30% of the an-
imals were removed resulting in a loss of 2,341 and 2,331 animals
across the 12 months post-impact for the GAM and CReSS methods
respectively. For the redistribution setting, 15% of the animals were
moved from the central region to the south east.

Under GAM and CReSS based generation for the near-shore
scenarios 26,934 and 11,901 animals were present before impact
respectively for the 12 months simulated. Under the decrease sce-
nario, 30% of the animals were removed resulting in a loss of 8,359

and 3,693 animals under the GAM and CReSS generation methods
respectively. For the redistribution setting, 2,556 and 1,043 animals
(9% of total) were moved from the central region to the south.

It must be noted that it was hoped to include data poor scenarios
in the scope of the study, however due to the computing time in-
volved in fitting models using some methods it was not possible to
include data-poor scenarios in this piece of work. While we do not
anticipate the relative performance of the methods to change with
the move from data rich to data poor, this is speculation without
additional work.
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5.2 Sampling data from the surface

For each of the off-shore and near-shore scenarios, models I, II and
III were used to generate data from the underlying surface, and a
relevant sampling process used to lift points from these surfaces.

It is not realistic to assume that all animals available to be seen
by the observers (from the boat/plane/vantage point) are actually
seen and recorded with any real distance from the observation
point. For this reason, the observation process formed a part of
the simulation regime. Unfortunately, this was only possible here
for the off-shore scenarios because no information was available
about the detection process for the near-shore data. This is almost
invariably the case; the data recorded from the vantage point is a
mix of the underlying animal distribution surface and the imperfect
detection process and there is no way to disentangle these two
processes without independent information about the detection
process (Cox et al., 2013).

Currently, data about the observation process for vantage point
data is rarely (or never) collected and this could affect the results
returned from any models. For instance, animals will also be
missed from vantage point surveys due to imperfect detection and
this is likely to be worse for grid cells farthest from the observa-
tion point. It is crucial to collect data about the observation process
from vantage point surveys or the user runs the risk of concluding
impact-related effects are present if the detection process changes
during the survey period.

5.2.1 Off-shore scenarios

For the off-shore data, transects were sampled from the surface at
2 km intervals based on the transect spacing of the original sur-
vey, and at 0.5 km spacing along the transects. This returned 26

transects in a north-south direction from the study region.
To induce the correlation which is normally present due to co-

variates related to animal numbers missing from the model, cor-
relation was added directly to the additive predictor on the scale
of the link function. This involved generating ar(1) based corre-
lated noise from pre-defined blocks, which were specified to be 208

transect-days for the off-shore data.
As mentioned above, the off-shore data were lifted from the

underlying (simulated) surfaces and an imperfect detection process
assumed to result in sets of simulated observed counts. For this
reason, the observed number of animals (for the manufactured
transects) was obtained in the following way:
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1. The true number of animals were randomly placed within each
grid cell surveyed; the grid cells were specified to be 0.5 km x 0.5
km and thus the maximum distance an animal could be from the
trackline was 0.25 km.

2. The perpendicular distance to the transect line was determined
for each animal and a detection probability obtained based on a
half-normal detection function with a known scale parameter of
120. The furthest possible distance was the half-width of the grid
cell, i.e. 0.25 km.

3. Each animal was either deemed to be recorded or overlooked
based on a random binomial random process. Here, each animal
was considered a trial and the assigned probability of detection
was used for the probability of success.

4. In keeping with distance sampling analyses, the data returned
by this process comprised the total number of detections for each
line segment and the perpendicular distances to the detected
animals.

5.2.2 Near-shore scenarios

The near-shore data was sampled 17 hours a day, for 11 days per
month over a period of 24 calendar months (12 months each pre
and post impact). Additionally, to induce the correlation which is
normally present due to covariates related to animal numbers miss-
ing from the model, correlation was added directly to the additive
predictor on the scale of the link function. This involved generat-
ing temporally correlated noise from pre-defined blocks – in this
case, grid-cell days; this resulted in 5576 blocks for the near-shore
scenarios.

There was no account for imperfect detection in the near-shore
scenarios for reasons stated earlier.
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5.3 Evaluation of spatially explicit change

Environmental impact assessment is largely a spatial question,
and the conclusions drawn about any potential impacts should
be made with reference to the spatial locations of any post-impact
changes.

For instance, it may well be the case that the abundance and dis-
tribution of animals changes over time in an area without the
introduction of any renewable-related equipment. In these cases,
we would expect any spatially explicit changes post-impact to be
distributed without major reference to, or at least not restricted
to, locations in and around the point of interest. On the contrary,
impact-related changes are most likely to manifest in and around
the impacted site and thus significant changes centered about the
impact site provide more compelling evidence for impact-related
effects.

Sound decision making based on geo-referenced changes post-
impact relies on models which accurately describe the magnitude
of any changes, and in the correct locations. Additionally, the
models must be able to distinguish change which is within the
bounds of natural fluctuations (noise), from genuine change (the
signal) – changes which may or may not be impact related. Fur-
thermore, this signal to noise ratio might well change across the
surveyed area in line with (amongst other things) survey effort.

For these reasons, we evaluate the ability of each method to re-
turn the magnitude and location of any spatially explicit changes.
Additionally, we examine the performance of each method at cor-
rectly identifying genuine geo-referenced from background noise.

Quantifying spatially explicit changes pre and post impact in-
volve the following steps:

1. Model selection

2. Generating model predictions and 95% confidence intervals

3. Calculating pre and post impact differences with 95% confidence
intervals for these differences

and the methods for carrying these tasks are detailed in sections
5.3.1, 5.3.2 and 5.3.3.

During this process we also evaluate the ability of each method
to return the generated surfaces pre and post impact (section 5.3.4),
and so even if baseline characterisation is the current focus these
metrics tell the user how effective each method is at returning the
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generated surfaces – even when the differences across time are not
impact related.

5.3.1 Model choice

Choosing appropriate complexity for a model is crucial for good
results. Models which are too simple don’t characterise the data
well and have poor predictive power, while models which are
too complex can produce predictions which are very close to the
response data but would perform poorly for data unseen by the
model (e.g. count data from slightly different transects/sites).
Models which are too complex can also make it difficult to es-
timate model parameters precisely (or at all) which can make
assessing impact-related effects problematic.

In quantitative environmental impact assessment, the explicit test-
ing of an impact-related effect (either an overall increase/decrease
or a re-distribution) is often one of the main objectives of post-
impact analysis. Further, while the nature of the relationship
between non-impact related covariates and animal numbers might
also be of interest, the inclusion of additional covariates in a
model also helps ensure any changes in animal numbers, due to
these covariates, are not incorrectly attributed to an impact-related
effect.

In the results that follow, the model selection approach which is
routinely used for each method was employed where possible.
Where alternative approaches are also common for a particular
method, this information was also retained for comparison.

There are a variety of approaches used to choose between can-
didate models containing different covariates and the process of
including or excluding covariates from a model typically depends
on the estimation routine used to return parameter estimates. For
example, information criteria (IC) such as AIC and BIC statistics are
routinely used to select model covariates for those based on likeli-
hood estimation (e.g. GLMs and GAMs with Normal, Binomial and
Poisson errors), while models which also estimate over-dispersion
(e.g. extra Poisson variability) rely on quasi-likelihood estimation
and typically include the estimate of this dispersion parameter in
the fit statistic (e.g. the QAIC). These IC-based fit scores (AIC, BIC
and QAIC) are often used to govern model selection and models
with smaller scores (for a given fit score) are favoured.

Choosing model terms based on the p-values associated with
each is also a popular method of model selection for models with a
small number of candidate covariates. In these cases, a backwards
selection approach is often used which involves fitting the full
model (with all candidate terms included) and omitting candidate
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variables with large p-values one-by-one until the remaining covari-
ates have associated p-values which are smaller than some nominal
value (e.g. 0.05 or 0.01).

A p-value based approach can be particularly useful if one or
more covariates are of particular importance (e.g. impact-related
effects in a post-impact analysis). For instance, IC based selection
might select a model which includes an impact-related effect, but
the p-value associated with these terms might be relatively large
(i.e. a p-value which is larger than some nominal value, e.g. 0.05

or 0.01) and as high as 0.1573 (Atkinson (1980), Lindsey and Jones
(1998)). In this case, many will not find these impact-related effects
compelling and a p-value based selection scheme (which excludes
terms with large p-values) might be more suitable.

In the comparison results which follow, model selection for the
candidate GAMs was carried out using the QAIC scores which
involved comparing QAIC scores for models I, II and III. Model
based p-values were not used in this case since it was thought a
priori that these would likely be too small (due to the correlation
known to be present in the manufactured data) and would there-
fore lead to the retention of impact-related covariates which weren’t
genuine. While no assumption was made that the QAIC would be
immune to residual non-independence, this is likely to be one of
the models selection measures used in practice by analysts in the
renewables industry. For comparison with QAIC results, p-value
based results were also retained.

GEEs use quasi-likelihood fitting but permits correlated errors
and so model selection can proceed based on the QICu statistic
(for IC-based selection) or the associated p-values for each term. If
model-based p-values based on user specified error structures are
desired, then a correlation structure can be chosen using QIC(R)
values. In this work however, we chose to use p-values based on
the empirical ‘robust’ estimates of precision which use model resid-
uals more directly, rather than rely on a user-specified correlation
model. This option is particularly useful when only a small number
of correlation structures can be chosen (inside the software avail-
able) and the residual correlation within transects/grid locations is
unlikely to follow the available correlation models exactly.

In the comparison results which follow, model selection for
the candidate CReSS models was carried out using GEE-based
p-values, since these incorporate any within-transect autocorre-
lation. Specifically, a backwards selection approach based on the
impact term was used. Specifically, model III was fitted and if the
impact-related interaction effect was significant this was retained
(resulting in model III being chosen), otherwise the interaction term
was omitted from the model leading to the fitting of model II. If the
’impact’ term in model II was then not statistically significant, this
term was also omitted from the model resulting in model I being
‘chosen’.

The model selection problem is larger for mixed models (e.g.
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GLMMs and GAMMs) than for GLMs & GAMs since fixed ef-
fects, random effects and (potentially) non-independent error struc-
tures must be explicitly specified. For GLMMs and GAMMs which
employ ML estimation, the AIC or BIC can be used to choose be-
tween models with different fixed effects, random effects and error
structures. However, since ML has been shown to give variance
estimates which are too small, REML is often used to fit normal-
errors models instead. When REML is used, care must be taken
not to compare AIC (or BIC) scores across models with different
fixed effects (covariates) because AIC/BIC scores should only be
compared across models with the same random effects/error struc-
tures. In practice rather than use the (RE)ML, GAMMs are often
estimated using Penalised Quasi Likelihood (PQL) because there
are many often encountered features of real data (such as overdis-
persion, several random effects, and correlated non-normal errors)
which makes estimation by ML either impossible or impractical.
Unfortunately, these features are very often present in the process
generating the data and some account of these features is required
to obtain a realistic model and thus, realistic associated results.

It must be noted that PQL has been shown to give biased esti-
mates (coefficients which are systematically too large or systemat-
ically too small) when the mean for Poisson data is low (as is the
case here). Despite this, PQL is the most commonly used estima-
tion routine for overdispersed Poisson data fitted using GAMMs.
While it is indeed possible to specify the splines manually (e.g. us-
ing the bs function in R) and use the GLMM fitting engines (which
are not necessarily PQL based), this would be unlikely to emulate
what has been done in practice by those working in the renewables
industry and would therefore shed little light on the reliability of
GAMM-based results produced thus far. Further, this more manual
approach would involve substantially more time investigating the
many smoother-based alternatives considering the time required to
fit these methods to the data available here. For these reasons, the
widely available mgcv:gamm function was used to fit the GAMMs to
these data.

Model selection for PQL-based GAMMs is, at best, problematic.
There is a great deal of discussion in the literature about which
methods should not be used for model selection but there are cur-
rently no agreed alternatives, and certainly none which are coded
inside readily available software. In this case, the data are overdis-
persed (in line with the real data) and PQL estimation was neces-
sary if the estimates of precision are to be believed. While the use
of PQL estimation makes model selection complicated, GAMMs
have been used for analysing baseline monitoring and impact data
and are seen by some in the industry as a good way to incorporate
the correlation within transects often seen for data of this sort.

The problems with PQL-based model selection in this case are
two fold. The first issue is that IC based selection requires a like-
lihood based measure and PQL is only an approximation to the
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likelihood. The second issue is that while p-value based selection
might be sufficient for model selection purposes in some situa-
tions, in this case p-value based model selection is only possible for
Models I and II (no change post-impact and decrease post-impact).
For these models approximate Wald tests can be used to compare
models with and without each (smooth) term, and in particular,
the p-value for the decrease-post impact smooth term is directly
supplied.

The inclusion of a smoother-based interaction term in the mgcv:gamm

function however, supplies p-values with a different interpretation.
For the specified interaction term, the model returns p-values asso-
ciated with testing the smooth components for equality to zero for
the spatial surface before and after impact. While this is informative
about the nature of the spatial surface before and after impact (i.e.
whether it is nonlinear) this does not help the user decide whether
to include the interaction term in the model, or not (because the
surfaces may be nonlinear and yet identical before and after im-
pact). For some GAMMs an F-test would also be used to compare
nested models (e.g. Model I and Model III), however the estimation
of the dispersion parameter invalidates this test in this case and the
associated testing function fails to return a result.

These issues leave the user with a model selection problem,
and so a pragmatic solution was found in this case. For instance,
while PQL is only an approximation to a likelihood AIC-style
measures have been used to carry out GAMM selection for PQL-
based models using the gamm function. While it is indeed stated
in the gamm help files that the log-likelihood reported is not that
of the fitted GAMM, comparing alternative models shows some
evidence that it may be still appropriate for gamm (https://r-forge.r-
project.org/scm/viewvc.php/*checkout*/pkg/inst/doc/

gamm.pdf?revision=91&root=mumin&pathrev=91). As a con-
sequence, the MuMIn package (also available in R) allows model
selection based on AIC scores (using a gamm wrapper function
(http://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf)
and we expect this score is what has been used to date in the re-
newables industry, in the absence of a good, or any, alternative. For
this reason, the AIC-style score was used to discriminate between
GAMM models fitted to the data manufactured for comparison
purposes. In the comparison results that follow, the final GAMMs
were chosen using this AIC-style score; models I, II and III were
fitted and the AIC scores compared for each model.

In some cases, K-fold cross-validation (e.g. 10-fold CV)3 might 3 This involves folding the data evenly
into 10 mutually exclusive sets and
using 9 of these to fit the data and 1 of
these to ‘validate’ it. This is done until
each set has been used for validation.

be a useful model selection alternative for GAMMs when practical.
However, in this case the length of time taken to fit each model
precluded this approach.
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5.3.2 Generating model predictions and 95% confidence intervals

Predicted animal numbers from the three modelling approaches
were projected onto a grid to compare relative model performance
across the three methods and to measure model performance in
absolute terms; the latter is found by comparing model predic-
tions with ’truth’ (the underlying surface).

The uncertainty in these model predictions was also obtained
by considering the uncertainty in the detection function fitting
process (where applicable) and the uncertainty in the spatial mod-
elling fitting process.

Geo-referenced 95% confidence intervals were generated based on
this (combined) uncertainty which should have an associated ‘suc-
cess’ rate of 95%. This means the true value (on the grid) should
lie somewhere within these intervals 95% of the time and so the
proportion of the 100 intervals (for each scenario) that contain
the true value was used to assess the reliability of the confidence
intervals for each approach.

Model predictions based on the GAM and CReSS models were
obtained in the standard way using the estimated coefficients based
on the fitted models and the covariate data supplied for the predic-
tion grid. Obtaining predictions from the GAMM required some
post processing however, because estimated random effects are only
available for the blocks/transects observed and predictions were
required on a grid. This involved interpolating between transects.
Additionally, mixed effects models are conditional models and we
are interested in predicting average animal numbers for a popula-
tion of blocks/transects onto the grid (to give predictions compara-
ble with the other two population-averaged methods) and so there
was a need to ’marginalise’ model results. This marginalisation
process for the ’random intercept’ GAMM involved calculating the
average predicted value (for each grid cell) based on sampling 5000

random effects from the random effects distribution with mean zero
and the estimated standard deviation under the model.

The 95% confidence intervals for each grid cell were obtained
by combining the uncertainty at the detection function fitting stage
(in the case of the off-shore scenario results) and the uncertainty
in model parameters at the model fitting stage (for both the off-
shore and nearshore scenarios). For the off-shore scenarios, the
blocks/transects were resampled (with replacement) and the de-
tection function re-fitted each time to the resampled data using
the detection function chosen using the actual data. In each case,
the abundance estimates for each block were used as input to the
model chosen (using the actual data), the model refitted, and a set
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of predictions based on a set of parametric bootstrap coefficients
were obtained. Percentile based 95% confidence intervals for the
100 sets of the predictions obtained for each cell were then calcu-
lated.

Model uncertainty was not considered as a part of this process;
the model chosen for the detection function and spatial model
(with additional covariates) was used in this procedure rather than
chosen each time as a part of the resampling process. While this
would make the confidence intervals at least as wide, a pilot study
using the GAM method showed that model choice almost never
changed at the spatial modelling stage using bootstrap replicates
from the detection function process. This suggests that GAMs were
stable with respect to model choice even given perturbations in the
input data after correcting for imperfect detection.

5.3.3 Spatially explicit post-impact differences

The difference between model predictions pre and post impact
and 95% confidence intervals for the pre/post impact differences
were calculated for each cell on the prediction grid using the fitted
models in each case.

Each method was also used to generate model predictions and
associated 95% confidence intervals (section 5.3.2) for each grid
cell. This process was followed for each of the 100 realisations and
so 100 confidence intervals were available for each grid cell for
each method type. The proportion of the confidence intervals in
each case that contain the true value (based on the known surface)
was calculated.

Therefore, if a high proportion of intervals contain zero (indi-
cated by the red colour in the associated results; section 6.3) and
thus ‘no-difference’ is a plausible value for the pre/post impact dif-
ference, then there are few differences identified under the model.
Conversely, if a low proportion of intervals contain zero (indicated
by the blue colour in the results; section 6.3) then a large number of
significant differences pre and post impact are detected.

5.3.4 Evaluating model fit

In this piece of work, the data were simulated from a known pre
and post impact surface and we are able to compare model pre-
dictions from three different methods with the underlying surface
values. In practice however, the surface is always unknown and the
user needs to rely on the agreement between the input data and
each set of model predictions to discriminate between candidate
models. For this reason, we will outline some evaluation methods
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measuring the agreement between each set of model predictions
and both the underlying surfaces and the modelled data.

The discrepancy between the underlying surface(s) and the model
predictions were quantified using the Mean Squared Error (MSE).
This is essentially a measure of overall lack-of-fit and thus lower
MSE scores indicate better model performance. A statistical test
was also employed to test for genuine differences in model per-
formance since equivalent modelling approaches will never return
exactly the same predictions and thus slightly different MSE
scores.

The lack-of-fit scores (MSEs) were also viewed spatially to ex-
amine model performance in key areas (such as the impact and
redistribution zones) across the three methods.

Additionally, the discrepancy between the input data and model
predictions (as opposed to the underlying surface and model pre-
dictions) were viewed spatially to examine if these reflect the spa-
tial position of the larger lack-of-fit scores. This is useful because
the underlying surface is never known, and the user must rely on
the discrepancies between the input data and model predictions to
assess the available model(s).

The performance of each method was evaluated by quantifying
the sum of the squared differences4 between model predictions 4 using the squared differences ensures

positive and negative differences count
equally

and the corresponding values from the underlying surface (i.e.
from Model I, II or III). The mean across the 100 sums of squared
differences was calculated (Mean Squared Error; MSE) for the 100

realisations to give an overall measure of difference for each model
type.

The fidelity to the underlying function was also compared sta-
tistically across two models for each realisation using a pairwise
test. Specifically, a Wilcoxon paired signed rank test (Wilcoxon,
1945) was used to determine if there is a difference in the average
MSE score between the methods, considering two at a time; e.g.
GAMs vs GAMMs, GAMs vs CReSS and CReSS vs GAMMs. This
test is non-parametric and uses both the magnitude and sign of
the paired difference ranks to determine the difference. This tests
for no-difference in the average MSE scores between two methods
and a small p-value for each comparison means there is compelling
evidence for a difference between the two approaches under consid-
eration.

The MSEs can also be viewed spatially, to inspect the spatial lo-
cations of these squared differences for each model type. Here, the
range of the MSEs for each grid location can be compared across
methods and we can visually examine if the discrepancies between
the underlying function and model predictions are tightly clustered
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or widespread, and in particular their location with reference to the
impacted site.

In reality, the underlying surface is unknown and so the user can
only make a spatial examination of the input data compared with
model predictions (i.e. residual plots). However this comparison
should still be valuable if the input data is a good reflection of the
underlying surface. For this reason, we present some examples here
with reference to the underlying surface (which is unknown to the
user) and the input data available to the user.

The agreement between the input (response) data (pre and post
impact) and the models undergoing evaluation can be quantified
using numerical measures. Two such measures are the marginal
R2 and the concordance correlation; the former of which is widely
used to assess models fitted to independent and correlated data,
while the latter is recommended for correlated data.

The marginal R2 (R2
MARG) assesses the predictive power of the

model, and can be written as:

R2
MARG = 1−

∑s
i=1 ∑J

j=1 ∑ni
t=1(yijt − ŷijt)

2

∑s
i=1 ∑J

j=1 ∑ni
t=1(yijt − ȳ..)2

(10)

Here, ȳ.. is the mean of the response data across all correlated
blocks and time points.

The concordance correlation (rc) can also be used to compare the
response data to the fitted model and measures the agreement of
two sets of values (e.g. the input data (yijt) and fitted values from
the model (ŷijt)) and is constrained to give values between zero and
one:

rc =
2 ∑s

i=1 ∑J
j=1 ∑ni

t=1(yijt − ȳ..)(ŷijt − ¯̂y..)

∑s
i=1 ∑J

j=1 ∑ni
t=1(yijt − ȳ..)2

(11)

Here, ¯̂y.. is the mean of the fitted values across all segments/grid
locations (i = 1, ..., s), transects/days (j = 1, ..., J) and time points
(t = 1, ..., ni) and the remaining components are as described for
R2

MARG. A value close to one indicates good agreement between
the input data and the model and thus, that the model fits the data
well.
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6 Model comparison results

The methods of evaluation were both numerical and visual to give
the reader an appreciation of overall and geo-referenced model
performance. There were five measures used to assess model per-
formance:

1. Model choice (section 6.4)

2. Fit to the underlying process: mean squared error (section 6.5)

3. Spatially explicit bias: assessing the accuracy of the geo-referenced
predictions (section 6.2)

4. Spatially explicit coverage: assessing the reliability of the re-
ported geo-referenced precision (section 6.3)

5. Spatially explicit post-impact differences (section 6.1)

and the qualitative assessment of each method is provided in
section 7

Choosing between model types and methods using standard
fit measures (e.g. marginal R2 and concordance criterion) is also
discussed with reference to the processes known to be generating
the data.
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6.1 Spatially explicit post-impact differences

In this section, the ability of each method to detect spatially ex-
plicit change is assessed. The power of each method to detect gen-
uine overall change in animal numbers and the prevalence of each
method to falsely detect overall change is assessed in section 6.4.

CReSS and GAMMs produced broadly similar difference sur-
faces which were close to the manufactured data, however CReSS
was clearly superior to the other methods at detecting genuine
pre/post impact changes. Further, when CReSS falsely detected
statistically significant change, the magnitude of these changes
was so small as to remove any practical concern for the user.

GAMMs demonstrated some ability to detect spatially explicit
change but the power to do so was often substantially poorer than
CReSS.

GAMs generally produced over-fitted difference surfaces (which
falsely indicated increases and decreases across the surface),
however these differences were often not statistically significant
even when the changes were genuine. For this reason, GAMs of-
ten demonstrated very low power at detecting spatially explicit
change.

6.1.1 Off-shore results

The estimates for the pre/post impact differences and the preva-
lence of statistically significant pre/post impact differences are
shown on pages 54– 60. For these figures, the plots on the left rep-
resent the pre and post change in the predicted number of animals
(and a positive difference indicating more animals post impact),
while the plots on the right represent the proportion of confidence
intervals for these differences which include zero. Therefore, if
a high proportion of intervals contain zero (indicated by the red
colour in the associated figures) and ‘no-difference’ is a plausible
value for the pre/post impact difference, then few statistically sig-
nificant differences are identified under the model. Conversely, if
a low proportion of intervals contain zero (indicated by the blue
colour in the associated figures) then a large number of significant
differences aross the realisations are detected under the model.

For the no-change scenarios, we expect the left-hand plots in
Figures 15–19 to be green in colour (indicating minimal predicted
change), and the right-hand plots to be red in colour in line indicat-
ing non-significant change (with 0.95 on the response scale).

For the no-change scenarios, the GAM difference surfaces (the
point estimates for the pre-post impact differences) exhibited both
positive and negative change in inappropriate places (Figures 15
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and 18) however, these were not typically statistically significant.
The GAMMs also predicted non-negligible change in inappropriate
places, however these were rarely reported as statistically signifi-
cant (Figures 17 and 20). The CReSS surfaces indicated negligible
change post impact across the whole survey area (in keeping with
the manufactured data), and when these changes were statistically
significant the tiny magnitude of these differences was unlikely to
cause any practical concern (Figures 16 and 19).

For the decrease scenarios, correct results would be signalled by
blue colouration in both the left and right-hand plots in Figures 21–
25 (demonstrating a decrease post-impact) and a small percentage
of confidence intervals which contain zero (0.05 on the response
scale).

For the decrease scenarios, the GAMs predicted increases, rather
than decreases, post impact and these were largely in the south of
the survey area (Figures 21 and 24).

The CReSS and GAMM difference surfaces were closer to the
truth, however the decreases were largely centered about the im-
pact and redistribution areas (Figures 22, 23, 25 and 26). While the
CReSS and GAMMs difference surfaces were similar, CReSS located
the genuine decreases with higher success (40%-80%; Figures 22

and 25).
The GAMs and GAMMs did a substantially poorer job of identi-

fying the differences post-impact across the surface (Figures 21, 23,
24 and 26).

For the redistribution scenarios, we expect the left-hand plots
in Figures 27–29 and 32–34 to be largely green in colour with blue
colouration (representing a decrease) in and around the impact area
and red colouration (representing an increase) in the redistribution
area. The right-hand plots should show largely red colouration
excepting blue areas in the impact and redistribution areas. For
reference, the true pre-post impact differences are shown in Figures
30 and 31.

For the redistribution scenarios, the GAM-based difference re-
sults were highly variable and while it located decreases in the
centre of the area and increases at the redistribution site, it also pre-
dicted other changes that weren’t genuine (Figures 27, 30, 31 and
32), although some of these weren’t statistically significant.

In contrast, the CReSS and GAMM surfaces were closer to the
truth and located the decreases and increases in the appropriate
areas (Figures 28, 29, 33, 34, 30 and 31).

The identification of significant differences across the surface was
fairly similar across the three methods, however CReSS exhibited
markedly better ability at detecting spatial change for both the
decreases at the impact and the increases at the redistribution sites
(Figures 28 and 33). Alongside this ability to detect genuine change,
CReSS falsely detected differences about 30% of the time in the
south of the area. However, the estimates for these differences were
effectively zero and so are not practically important (Figures 28 and
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33).

6.1.2 Near-shore results

CReSS was clearly superior to the other methods at detecting gen-
uine post impact change and yet showed no tendency to falsely
detect change (Figures 36 and 39). The GAMM difference surfaces
were sometimes similar to the CReSS results (Figures 46, 49 and
54), however the GAMMs exhibited worse power to detect change
when it was present, particularly for the post-impact decrease sce-
nario (Figures 43 and 46). The GAMs tended to identify significant
changes which weren’t genuine.

For the no-change scenarios, we expect the left-hand plots in
Figures 35–40 to be green in colour (indicating minimal predicted
change), and the right-hand plots to be red in colour in line indicat-
ing non-significant change (with 0.95 on the response scale).

For the no-change scenarios, the GAM difference surfaces (the
point estimates for the pre-post impact differences) exhibited both
positive and negative change in inappropriate places (Figures 35

and 38) which were often statistically significant. The GAMMs also
predicted non-negligible change in inappropriate places, however
these weren’t commonly reported as statistically significant (Figures
37 and 40). The CReSS surfaces indicated negligible change post
impact across the whole survey area (in keeping with the manu-
factured data), and these changes were rarely, if ever, statistically
significant (Figures 36 and 39).

For the decrease scenarios, correct results would be signalled by
blue colouration in both the left and right-hand plots in Figures 41–
46 (demonstrating a decrease post-impact) and a small percentage
of confidence intervals which contain zero (0.05 on the response
scale).

For the decrease scenarios, the GAMs tended to predict either
no-change or increases, rather than decreases post-impact, and
these increases were restricted to the south of the survey area (Fig-
ures 41 and 44). The CReSS surfaces were closer to the truth, how-
ever the decreases were predicted to be uneven and larger in the
impact and redistribution areas. The CReSS method performed
exceptionally well at detecting significant decreases across the sur-
vey area, particularly for the CReSS-based generated data (Figures
42 and 45). The GAMM difference surfaces failed to detect the de-
creases in most locations and when identified by the model, the de-
creases were almost never significant for either the GAM or CReSS
generated data (Figures 43 and 46).

For the redistribution scenarios, we expect the left-hand plots in
Figures 47–54 to be largely green in colour with blue colouration
(representing a decrease) in and around the impact area and red
colouration (representing an increase) in the redistribution area.
The right-hand plots should show largely red colouration excepting
blue areas in the impact and redistribution areas. For reference, the
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true pre-post impact differences are shown in Figures 50 and 51.
The GAMs tended to detect the increases in the redistribution

area with more success than the decreases near the impacted site
(Figures 47 and 52) but commonly identified significant change
in the central part of the surveyed area (including areas where no
change occurred). CReSS tended to return surfaces which were
closer to reality and tended to return the decreases in the impact
zones and associated increases in the redistribution area. However,
CReSS was better able to detect the increases in the redistribution
area as significant, compared with the decreases in the impact site
(Figures 48 and 53). GAMMs methods returned difference surfaces
that were very similar to CReSS and the true redistribution how-
ever, GAMMs exhibited worse power at detecting change for the
redistribution scenarios (Figures 49 and 54).
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Figure 15: GAM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
no-change post impact (Model
I).

Figure 16: CReSS-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
no-change post impact (Model
I).

Figure 17: GAMM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
no-change post impact (Model
I).
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Figure 18: GAM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which
include zero (right-hand plot)
for the CReSS generated data
with no-change post impact
(Model I).

Figure 19: CReSS-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which
include zero (right-hand plot)
for the CReSS generated data
with no-change post impact
(Model I).

Figure 20: GAMM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which
include zero (right-hand plot)
for the CReSS generated data
with no-change post impact
(Model I).
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Figure 21: GAM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
a decrease post impact (Model
II).

Figure 22: CReSS-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
a decrease post impact (Model
II).

Figure 23: GAMM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
a decrease post impact (Model
II).
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Figure 24: GAM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which
include zero (right-hand plot)
for the CReSS generated data
with a decrease post impact
(Model II).

Figure 25: CReSS-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which
include zero (right-hand plot)
for the CReSS generated data
with a decrease post impact
(Model II).

Figure 26: GAMM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which
include zero (right-hand plot)
for the CReSS generated data
with a decrease post impact
(Model II).
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Figure 27: GAM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
a redistribution post impact
(Model III).

Figure 28: CReSS-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
a redistribution post impact
(Model III).

Figure 29: GAMM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
a redistribution post impact
(Model III).
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Figure 30: Difference plot
showing the pre/post impact
redistribution differences for
the GAM generated data.

Figure 31: Difference plot
showing the pre/post impact
redistribution differences for
the CReSS generated data.
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Figure 32: GAM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the CReSS generated data with
a redistribution post impact
(Model III).

Figure 33: CReSS-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the CReSS generated data with
a redistribution post impact
(Model III).

Figure 34: GAMM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the CReSS generated data with
a redistribution post impact
(Model III).
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Figure 35: GAM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
no-change post impact (Model
I).

Figure 36: CReSS-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
no-change post impact (Model
I).

Figure 37: GAMM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
no-change post impact (Model
I).
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Figure 38: GAM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which
include zero (right-hand plot)
for the CReSS generated data
with no-change post impact
(Model I).

Figure 39: CReSS-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which
include zero (right-hand plot)
for the CReSS generated data
with no-change post impact
(Model I).

Figure 40: GAMM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which
include zero (right-hand plot)
for the CReSS generated data
with no-change post impact
(Model I).
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Figure 41: GAM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
a decrease post impact (Model
II).

Figure 42: CReSS-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
a decrease post impact (Model
II).

Figure 43: GAMM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
a decrease post impact (Model
II).
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Figure 44: GAM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which
include zero (right-hand plot)
for the CReSS generated data
with a decrease post impact
(Model II).

Figure 45: CReSS-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which
include zero (right-hand plot)
for the CReSS generated data
with a decrease post impact
(Model II).

Figure 46: GAMM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which
include zero (right-hand plot)
for the CReSS generated data
with a decrease post impact
(Model II).
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Figure 47: GAM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
a redistribution post impact
(Model III).

Figure 48: CReSS-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
a redistribution post impact
(Model III).

Figure 49: GAMM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the GAM generated data with
a redistribution post impact
(Model III).
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Figure 50: Difference plot
showing the pre/post impact
redistribution differences for
the GAM generated data.

Figure 51: Difference plot
showing the pre/post impact
redistribution differences for
the CReSS generated data.
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Figure 52: GAM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the CReSS generated data with
a redistribution post impact
(Model III).

Figure 53: CReSS-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the CReSS generated data with
a redistribution post impact
(Model III).

Figure 54: GAMM-based point
estimates for the pre/post im-
pact difference (left-hand plot)
and the proportion of the 95%
confidence intervals which in-
clude zero (right-hand plot) for
the CReSS generated data with
a redistribution post impact
(Model III).
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6.2 Spatially explicit bias: assessing the accuracy of the geo-referenced
predictions

The differences in the location and magnitude of the spatially
explicit bias between the competing methods for the off-shore
results were small, and thus there was little to choose between
them. There was, however, substantial bias in the near-shore
results for the GAMM method, suggesting GAMMs were a partic-
ularly poor choice for the near-shore scenarios.

Reassuringly, the spatial locations of the discrepancies between
model predictions and the data were similar to the differences
between model predictions and the underlying surface. This il-
lustrates that visualising geo-referenced residuals can be a good
way to examine if any hotspots exhibited by a model are simply
artefacts of an ill-fitting model, or genuinely features in the data.

Please note: using residual plots alone to choose a model how-
ever, would be ill-advised because an overly complex model would
fit the data more closely than other models/methods. While this
delivers smaller differences between the data and the model, it is
not necessarily an accurate reflection of the underlying surface (e.g.
the GAM results for the off-shore scenarios).

6.2.1 Off-shore results

The GAM bias maps look similar to the CReSS and GAMM equiv-
alents (e.g. Figures 188–190), however the GAMM bias appeared
to be more widely dispersed, while still being centered about the
impact and redistribution zones. A full range of bias maps can be
found in section 12.3).

Figure 55: GAM based average
bias for CReSS-generated data
pre and post impact for the
redistribution off-shore sce-
nario (Model III). The surface
on the left is pre-impact (base-
line data) while the right-hand
surface is post impact.
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Figure 56: CReSS based aver-
age bias for CReSS-generated
data pre and post impact for
the redistribution off-shore
scenario (Model III). The sur-
face on the left is pre-impact
(baseline data) while the right-
hand surface is post impact.

Figure 57: GAMM based aver-
age bias for CReSS-generated
data pre and post impact for
the redistribution off-shore
scenario (Model III). The sur-
face on the left is pre-impact
(baseline data) while the right-
hand surface is post impact.

The location of the largest model residuals was very similar to
the location of the bias, however there was very little difference
in the magnitude and location of model residuals across the three
methods undergoing comparison (section 12.6). In general, the
residuals for the no-change, decrease and redistribution scenarios
(under either the smooth or more flexible surface) were largest
in and around the centre and south-west of the survey area (e.g.
Figure 58).

Figure 58: Average CReSS-
based residuals (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.
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6.2.2 Near-shore results

All methods tended to overpredict animal numbers located between
the impact site and the vantage point (Figures 59– 61) but GAMM
bias was more prominent in this area (Figure 61). The GAMM bias
was also typically more localised than the other methods (near the
impact site) and the bias was more widely dispersed for all three
methods under the redistribution scenarios (Model III), particularly
for the smoother GAM-generated surface (Figure 61). A full range
of bias maps for the near shore data can be found in section 12.4.

Figure 59: Average GAM-
based bias (across the 100

realisations) represented spa-
tially for the GAM generated
data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean bias while
the right-hand plot represents
post-impact mean bias.

Figure 60: Average CReSS-
based bias (across the 100

realisations) represented spa-
tially for the GAM generated
data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean bias while
the right-hand plot represents
post-impact mean bias.
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Figure 61: Average GAMM-
based bias (across the 100

realisations) represented spa-
tially for the GAM generated
data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean bias while
the right-hand plot represents
post-impact mean bias.

The relatively high bias in the GAMMs (compared with other
methods) is also exhibited in the model residuals; the otherwise
small residuals seen with other methods (e.g Figure 62) are much
larger for the GAMM models, particularly in and around the im-
pact site (e.g. Figure 62).

Figure 62: Average CReSS-
based residuals (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.

Figure 63: Average GAMM-
based residuals (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.
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6.3 Spatially explicit coverage: assessing the reliability of the reported
geo-referenced precision

The results for the three methods were mixed across the off-shore
and near-shore scenarios. GAMMs demonstrated the best cov-
erage rates for the off-shore results, however CReSS performed
better than GAMMs for the near shore scenarios. GAMs exhibited
particularly poor coverage around the edges of the survey area for
the off-shore scenarios (due to confidence intervals which were
too narrow) but this improved for the near-shore scenarios.

As expected, all methods performed badly in the parts of the sur-
face where model predictions were prone to being systematically
too high, or systematically too low (i.e. in locations with high
bias)

Poor geo-referenced coverage can be because the associated
confidence intervals are unbiased but too small, or due to bias in
these locations. For instance, in high-bias areas the centre of the
confidence intervals are systematically too high or too low and so
the true value likely lies outside the confidence intervals unless
they are particularly wide. Additionally, since there is no reason to
expect that areas of the surface with high bias will also have high
variance, the coverage plots are best considered alongside the bias
maps.

6.3.1 Off-shore results

The GAMs exhibited confidence intervals which were too narrow in
areas to the south and east of the survey area (with coverage prob-
ability ≈ 0.5), however the often pronounced poor coverage to the
south of the survey area improved for the post-impact surfaces (e.g
Figure 64 and section 12.7). The CReSS coverage for the smoother
surfaces (for Models I, II and II) was largely good except in the
far-east along the edge of the survey area (e.g. Figure 65). We ex-
pect this may be due to the ‘edge’ effect generated under the GAM
surface which is difficult to approximate using local radial basis
functions available to CReSS - though this is speculation without
further work.

The coverage for the more flexible surfaces (generated using
CReSS) was more patchy under all approaches, although this patch-
iness was more severe for CReSS and GAMM based models (e.g.
Figures 67 – 69). In particular, the CReSS and GAMM approaches
returned coverage rates that were very low (with coverage prob-
ability ≈ 0.2) in areas of high bias. The GAMM approach tended
to produce better coverage rates overall compared with the other
methods (e.g. Figure 66).
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Figure 64: GAM-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 65: CReSS-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 66: GAMM-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.
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Figure 67: GAM-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 68: CReSS-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 69: GAMM-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.
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6.3.2 Near-shore results

The often high bias in the model predictions resulted in extremely
poor coverage in these areas, particularly for the GAM generated
surfaces (e.g. Figures 70–72). All three methods gave poor results,
but the GAMMs were noticeably poorer for models I, II and III.
In line with the off-shore results, the more flexible surfaces gave
patchier results ranging from almost zero to the nominal 95% cover-
age.

Figure 70: GAM-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 71: CReSS-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 72: GAMM-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.
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6.4 Model choice

The ability of each modelling approach to choose the appropriate
model was of interest because model choice is integral to accurate
impact assessment – the reader must be confident that any impact
effects identified by the models are genuine and confident that
when any impact effects exist they are not overlooked. The model
selection process followed for each method is described in section
5.3.1.

In summary, all methods had (at least) a tendency to choose the
redistribution post-impact model, even if there was no change
post impact or that change was an overall decrease.

The model choice results show that CReSS performed markedly
better than GAMs or GAMMs and that GAMs performed so badly
as to invalidate their use for model selection (this is also arguably
true for GAMMs).

GAMs always chose the (most complicated) redistribution post-
impact model even when there was no impact at all, or the gen-
uine impact was an average decrease.

6.4.1 Off-shore results

The results for GAMs suggest overfitting was widespread (Table
1) and the most complicated model was always chosen even when
the process generating the data had no impact effect at all, or the
post-impact was an overall decrease. GAM selection performance
did not improve if p-values were used; the model selection results
were identical under the QAIC and model-based p-values.

This overfitting was entirely expected – GAMs are not appro-
priate for positively correlated data (when the covariates are un-
available to model this correlation in full) and in these cases return
p-values which are too small.

CReSS also tended to overfit, although less dramatically than the
GAMs. While CReSS chose a redistribution model more often than
it chose the correct, ‘no impact’, model (Table 1 and Figures 143 &
144) the performance was much better for the post-impact decrease
(Figures 147 & 148) and markedly better for the post-impact re-
distribution (Figures 153 & 154).

GAMMs invariably performed substantially worse than CReSS
but uniformly better than GAMs regarding model choice. GAMMs
tended to overfit and choose the redistribution model even when
an impact was not genuinely present or a average decrease was in
effect (Table 1 and Figures 145 146, 149 & 150). Of course, when a
re-distribution was in effect, this model type more often than not
chose the correct model (Figures 155 & 156), but since choosing
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model III was most likely under GAMMs anyway (whatever the
true model) the identification of a redistribution impact might well
leave the user wondering if this effect is genuine.

Surface GAM CReSS GAMM

GAM generated: Model I 0% 43% 30%
CReSS generated: Model I 0% 51% 12%
GAM generated: Model II 0% 60% 15%
CReSS generated: Model II 0% 42% 9%
GAM generated: Model III 100% 87% 64%
CReSS generated: Model III 100% 97% 78%

Table 1: Percentage of fitted
models that correctly chose the
true model (i.e. I, II or III) for
the off shore scenarios using
the model selection criteria
outlined in section 5.3.1.

6.4.2 Near-shore results

In keeping with the off-shore results, the redistribution model was
always chosen using GAMs for the near shore scenarios (Table
2 and Figures 157, 158, 167, 168) even when the process generat-
ing the data had no impact effect at all or the post-impact was an
overall decrease. The results for the GAMs were also the same if
p-values, rather than the QAIC scores, were used.

In contrast to the off-shore results, CReSS only had a tendency
to overfit for the data generated with a smooth surface and a post-
impact decrease (Table 2 and Figures 163 & 164), but otherwise
performed remarkably well in absolute terms and when compared
to the other modelling approaches (Figures 159, 160, 171 & 172).

In contrast to the off-shore results, GAMMs performed almost as
poorly as the GAMs and substantially worse than CReSS. GAMMs
tended to overfit and choose the redistribution model even when
an impact was not genuinely present or a average decrease was in
effect with one exception (Table 2 and Figures 161 162, 165 & 166).

Surface GAM CReSS GAMM

GAM generated: Model I 0% 96% 21%
CReSS generated: Model I 0% 96% 3%
GAM generated: Model II 0% 40% 0%
CReSS generated: Model II 0% 100% 4%
GAM generated: Model III 100% 76% 69%
CReSS generated: Model III 100% 76% 94%

Table 2: Percentage of fitted
models that correctly chose the
true model (i.e. I, II or III) for
the near shore scenarios using
the model selection criteria
outlined in section 5.3.1.
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6.5 Fit to the underlying surfaces

In summary, no single method was clearly superior to the others
for both the off-shore and near-shore scenarios.

For example, GAMMs performed better for some of the off-shore
scenarios but markedly worse in all of the near-shore scenarios.

In contrast the GAMs performed the worst overall in nearly all
of the off-shore scenarios but the best for all of the near-shore
scenarios.

The CReSS approach performed as well as the GAMMs (first-
equal) for some of the off-shore scenarios and practically similar
for the remaining, and there was very little difference between
the performance of the CReSS and GAM approaches for the near
shore scenarios.

6.5.1 Off-shore results

GAMMs generally seemed to give the best results when compared
with the underlying function (Figures 73–78) although the fit results
for CReSS were statistically indistinguishable for the decrease post-
impact models for both the GAM and CReSS generated surface
types (Table 3, page 81). Notably, there was a great deal of overlap
in MSE scores across the methods undergoing comparison, indicat-
ing any practical differences in model performance were relatively
small.

CReSS performed worse on average than GAMM in 4 of the 6

cases (Table 3), equivalent to GAMM in 2 cases, but better than
GAMs in 5 of the 6 cases (Table 3). In particular, CReSS tended to
overfit to the underlying function; i.e. the predictions based on the
model were closer to the data than GAMMs (Table 4, page 82), but
these predictions were further from the underlying function. While
there was some evidence of overfitting with CReSS, this method
overfitted much less than the corresponding GAMs (also Table 4).

GAMs performed equivalent to GAMM in 1 of the 6 cases,
equivalent to CReSS in 2 of the 6 cases, and had the worst perfor-
mance of the three methods in 3 of the 6 cases (Table 3). Specif-
ically, GAMs tended to overfit to the underlying function; i.e.
the predictions based on the model were closer to the data than
GAMMs or CReSS (Table 4), but these predictions were further
from the underlying function.

Notably due to overfitting, the marginal R2 value would not
choose the best model for these scenarios. Here, GAMs appeared
to fit the data best (Table 4) but GAMs were most often the poorest
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choice when considering the process generating the data (Table
3). Further, while GAMMs fitted the worst to the data (according
to the marginal R2) they approximated the underlying function
better in most cases. The fit of the CReSS models to the data was
intermediate between the two alternative methods (Table 4) and
performed equivalently to GAMMs in 1/3 of the scenarios but
worse in the others when considering closeness to the underlying
functions (Table 3).

These models report rc values between 0.2 and 0.3 (Table 5) but
due to overfitting by GAMs, this measure (and the marginal R2

already described) also suggests the GAM is the best model of the
three options. This is not the case: GAMs fit better to the input data
but do not return values closest to the underlying surface.

Figure 73: MSE scores for the
GAM-generated (smooth sur-
face) with mean defined using
Model I (no-change post im-
pact) across the three model
types.

Figure 74: MSE scores for the
CReSS-generated (flexible sur-
face) with mean defined using
Model I (no-change post im-
pact) across the three model
types.
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Figure 75: MSE scores for the
GAM-generated (smooth sur-
face) with mean defined using
Model II (decrease post im-
pact) across the three model
types.

Figure 76: MSE scores for the
CReSS-generated (flexible
surface) with mean defined
using Model II (decrease post
impact) across the three model
types.

Figure 77: MSE scores for the
GAM-generated (smooth sur-
face) with mean defined using
Model III (redistribution post
impact) across the three model
types.

Figure 78: MSE scores for the
CReSS-generated (flexible sur-
face) with mean defined using
Model III (redistribution post
impact) across the three model
types.
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Surface Best Model Mean Difference
in MSE

Comparison GAMM vs GAM

GAM generated: Model I GAMM 0.0328

CReSS generated: Model I GAMM 0.0059

GAM generated: Model II GAMM 0.0212

CReSS generated: Model II GAMM 0.0056

GAM generated: Model III GAMM 0.0135

CReSS generated: Model III NS 0.0005

Comparison GAMM vs CReSS

GAM generated: Model I GAMM 0.0156

CReSS generated: Model I NS 0.0052

GAM generated: Model II NS 0.0043

CReSS generated: Model II GAMM 0.0066

GAM generated: Model III GAMM 0.0102

CReSS generated: Model III GAMM 0.0104

Comparison GAM vs CReSS

GAM generated: Model I CReSS 0.0166

CReSS generated: Model I NS 0.0017

GAM generated: Model II CReSS 0.0158

CReSS generated: Model II NS 0.0006

GAM generated: Model III NS 0.0020

CReSS generated: Model III GAM 0.0106

Table 3: Pairwise compari-
son results for MSE scores
across the three model types
for the off-shore scenarios. The
model type which fits signifi-
cantly better (according to the
Wilcoxon paired signed rank
test, see above) is listed in the
Best Model column, when NS
is shown this indicates there
was no significant difference
between the model types.
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Surface GAM CReSS GAMM
GAM generated: Model I 0.1186 0.1111 0.1064

CReSS generated: Model I 0.1521 0.1441 0.1403

GAM generated: Model II 0.1280 0.1196 0.1125

CReSS generated: Model II 0.1417 0.1345 0.1265

GAM generated: Model III 0.1610 0.1530 0.1447

CReSS generated: Model III 0.1749 0.1691 0.1598

Table 4: Average Marginal
R2 values for models chosen
for the data generated using
model I, II or III for the off-
shore scenarios. The method
returning the highest score
for a particular scenario is
highlighted in bold.

Surface GAM CReSS GAMM
GAM generated: Model I 0.2105 0.2022 0.2004

CReSS generated: Model I 0.2653 0.2557 0.2555

GAM generated: Model II 0.2216 0.2053 0.2101

CReSS generated: Model II 0.2482 0.2342 0.2393

GAM generated: Model III 0.2744 0.2617 0.2645

CReSS generated: Model III 0.2984 0.2851 0.2938

Table 5: Average rc values for
models chosen for the data
generated using model I, II
or III for the off-shore scenar-
ios. The method returning the
highest score for a particular
scenario is highlighted in bold.
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6.5.2 Near-shore results

In stark contrast to the off-shore results, GAMMs generally seemed
to give the worst results compared with the underlying function
(Figures 79–84). Further, while there was little practical difference
in model performance between CReSS and GAMs (Figures 79–84),
GAMs fitted significantly closer to the underlying function when
interrogated using the Wilcoxon tests (Table 6, page 85). Notably,
there was typically a great deal of overlap in MSE scores obtained
by CReSS and GAMs.

In contrast to the off-shore results, the methods appeared to be
underfitting (i.e. choosing models with less flexiblity than required
by the underlying surface). GAMMs in particular exhibited both
poor fit to the underlying surface and poor fit to the data (Table
7). The fit to the data and underlying function improved under
CReSS and GAMs, in that order; Tables 6 and 7. Interestingly, the
concordance criterion alternated between GAMMs and CReSS as
exhibiting the best fit to the data (Table 8, page 85).

Figure 79: MSE scores for the
GAM-generated (smooth sur-
face) with mean defined using
Model I (no-change post im-
pact) across the three model
types.

Figure 80: MSE scores for the
CReSS-generated (flexible sur-
face) with mean defined using
Model I (no-change post im-
pact) across the three model
types.
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Figure 81: MSE scores for the
GAM-generated (smooth sur-
face) with mean defined using
Model II (decrease post im-
pact) across the three model
types.

Figure 82: MSE scores for the
GAM-generated (flexible sur-
face) with mean defined using
Model II (decrease post im-
pact) across the three model
types.

Figure 83: MSE scores for the
GAM-generated (smooth sur-
face) with mean defined using
Model III (redistribution post
impact) across the three model
types.

Figure 84: MSE scores for the
CReSS-generated (flexible sur-
face) with mean defined using
Model III (redistribution post
impact) across the three model
types.
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Surface Best Model Mean Difference
in MSE

Comparison GAMM vs GAM

GAM generated: Model I GAM 0.54

CReSS generated: Model I GAM 1.49

GAM generated: Model II GAM 0.45

CReSS generated: Model II GAM 1.18

GAM generated: Model III GAM 0.46

CReSS generated: Model III GAM 1.20

Comparison GAMM vs CReSS

GAM generated: Model I CReSS 0.53

CReSS generated: Model I CReSS 1.34

GAM generated: Model II CReSS 0.45

CReSS generated: Model II CReSS 1.09

GAM generated: Model III CReSS 0.45

CReSS generated: Model III CReSS 1.00

Comparison GAM vs CReSS

GAM generated: Model I GAM 0.009

CReSS generated: Model I GAM 0.152

GAM generated: Model II GAM 0.013

CReSS generated: Model II GAM 0.090

GAM generated: Model III GAM 0.007

CReSS generated: Model III GAM 0.200

Table 6: Pairwise comparison
results for MSE scores across
the three model types for the
near-shore scenarios. The
model type which fits signifi-
cantly better (according to the
Wilcoxon paired signed rank
test, see above) is listed in the
Best Model column, when NS
is shown this indicates there
was no significant difference
between the model types.

Surface GAM CReSS GAMM
GAM generated: Model I 0.1737 0.1719 0.1611

CReSS generated: Model I 0.2462 0.2427 0.1921

GAM generated: Model II 0.1520 0.1495 0.1404

CReSS generated: Model II 0.2371 0.2347 0.1857

GAM generated: Model III 0.1523 0.1501 0.1417

CReSS generated: Model III 0.2446 0.2421 0.1950

Table 7: Average Marginal
R2 values for models chosen
for the data generated using
model I, II or III for the near-
shore scenarios. The method
returning the highest score
for a particular scenario is
highlighted in bold.

Surface GAM CReSS GAMM
GAM generated: Model I 0.2937 0.2919 0.3175
CReSS generated: Model I 0.3871 0.3879 0.3652

GAM generated: Model II 0.2628 0.2611 0.2855
CReSS generated: Model II 0.3758 0.3764 0.3571

GAM generated: Model III 0.2618 0.2601 0.2891
CReSS generated: Model III 0.3852 0.3874 0.3596

Table 8: rc values for models
chosen for the data generated
using model I, II or III for
the near-shore scenarios. The
method returning the highest
score for a particular scenario
is highlighted in bold.



86

7 Comparison summary

In summary, GAMs fit the underlying surfaces well (measures 2

&3; Table 9) but were very poor at assessing if impact-related effects
were present and at locating spatially explicit change (measures 1 &
5; Table 9).

CReSS performed the best of the three methods at assessing if
impact-related effects were present and at identifying spatially ex-
plicit differences (measures 1 & 5; Table 9). CReSS also performed
well, and similar to GAMs, at approximating the underlying pro-
cess (measures 2 & 3; Table 9).

GAMMs performed very poorly when assessing if impact-related
effects were present but peformed well at locating spatially explicit
change – at least for the off-shore scenarios (measures 1 & 5; Table
9); GAMMs performed poorly when attempting to approximate
the underlying surface for the near-shore scenarios (measures 2

& 3; Table 9) and for this reason attracted a red rating for these
measures.

All three methods showed mixed performance regarding spa-
tially explicit coverage of the 95% confidence intervals.

Measure GAM CReSS GAMM

(1) Model Choice
(2) Fit to the underlying process
(3) Spatially explicit bias
(4) Spatially explicit coverage
(5) Spatially explicit change

Table 9: Qualitative summary
of the comparison results
across the three methods.
The green colour indicates
the method performed well,
the red colour indicates the
method performed poorly,
while the amber colour indi-
cates the results were mixed
and performed much better in
some cases than others.

8 Practical considerations

8.1 Computational issues

GAMMs proved to be very difficult to fit to the data generated
here. The computational time was much longer than the other two
model types and the frequently encountered convergence problems
often meant results were unable to be obtained for some realisa-
tions – and there was no apparent reason why these realisations
were particularly different to any of the others. GAMMs are also
conditional models and thus, predicting to a grid requires some
post-processing; this adds to the time involved in their use. There
are also still unresolved model selection issues regarding GAMMs
which makes model choice problematic in practice unless an empir-
ical and computationally intensive approach (e.g. cross validation)
is adopted for this purpose.

8.2 Surface fitting in areas with complex topography

Users should take care that GAMs (or similar methods) are not
used to model areas with internal exclusion zones of any conse-
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quential size in the survey area (since the smoothing method is
underpinned by straight-line point to point distances). For instance,
using GAMs (as they are typically implemented) in these situations
could result in hotspots leaking across islands and coastline areas.
The SOAP basis can be used instead of the default smoother in-
side the GAM fitting engine for sites with complex topography, but
this methodology doesn’t account for temporal autocorrelation and
there are also many practical issues involved with their fitting (see
Scott-Hayward et al. (2013) for details).

CReSS models are spatially adaptive and therefore potentially
more flexible than GAM surfaces. The CReSS approach also allows
the smoother to be based on geodesic distances which are more
appropriate when the survey area includes internal exclusion zones
- or complex topography. While these features can be advantages,
geodesic distances must be provided to the software in order to
generate the smoother basis and this requires specialist user in-
put. There is also some care required when setting up the initial
grid containing the anchor points (or knots) for basis generation,
however code is available and continually being improved to make
this step more automatic. CReSS computer fitting time was similar
in general to GAM fitting, however generation of a geodesic dis-
tance matrix can take some time depending on the resolution of the
distances calculated.

8.3 Surface fitting for spatially-patchy (highly uneven) distributions

In this work we have simulated data based on an off-shore and
near-shore scenario and while it is speculation about how exactly
these methods will perform for new data, we have published results
regarding CReSS and GAM comparisons for spatially adaptive
surfaces. In particular, based on the spatially adaptive capabilities
of the CReSS method, CReSS was shown to outperform GAM-based
surface fitting for distributions which are highly uneven across the
surface (see results in (Scott-Hayward et al., 2013)).

9 Recommendations

9.1 Minimum survey design criteria

The importance of spatial sampling design could be driven by
finding locations where the distribution of covariate values mimics
the distribution of covariate values throughout the study area.

The guiding principle of concern with placing sampling effort to
be analysed with model-based methods is to ensure that the range
of possible covariate values is included in the sample. Likewise,
and more difficult to achieve, a good range of combinations of co-
variate values should also be included in the sample, particularly if
interactions are included in the density surface models (e.g. interac-
tion of depth and chlorophyll index).
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Note however, if sampling represents the range of the covariate
over which animal density is invariant, there will be the presump-
tion of no relationship between the covariate and animal density.
For this reason, the covariate may not be selected for inclusion be-
cause its range is not represented in the sample.

Practical advice for placement of survey design, when model-
based inference will be used for analysis, is very similar to advice
for design-based inference; place transects along gradients in an-
imal density (such that high and low density areas are sampled).
Hopefully this will capture a range of covariates; in the absence
of detailed information about the shape of relationships between
covariates and animal density.

There is little published literature on design recommendations
for model-based estimates of animal abundance. Some guidance
regarding the role of design in model-based inference is provided
in Borchers et al. (2002, Section 3.2.5). A hybrid of model- and
design-based sampling is called "model-assisted survey sampling."
It is the subject of a text by Särndal and Swensson (2003). A recent
paper by Peel et al. (2013) discusses ways in which survey effort can
be allocated so as to improve estimates of fish abundance produced
by model-based inference. In a contrasting vein, Shibata et al. (2013)
discusses the consequence of using predictive covariates that do not
influence animal distribution. This demonstrates that model-based
inference is a more fragile mode of inference because if the model is
wrong, then the inference about animals will be incorrect.

9.2 Identification of predictive covariates

A successful model selection procedure depends on a comprehen-
sive identification of covariates. Within the framework of impact
assessments and monitoring related to offshore renewables it is
especially important in order to assess the impact from the re-
newables project that covariates reflect both habitat features and
existing pressures on model targets.

Both habitat features and pressures may be important structuring
elements in the distribution of the animals recorded prior to the
construction of an offshore wind farm or an ocean energy device.
Obviously, both habitat and pressure covariates reflect processes
at different scale (see Covariate relevance), and accordingly it is
critical to consider the scale of the impact study or monitoring, and
requirements for spatial resolution of predicted distributions.

Because most processes in the marine environment are dynamic,
prediction at a high resolution requires covariates to be available
at a high spatio-temporal resolution. Data in high spatio-temporal
resolution on physical oceanographic processes are generally avail-
able as hindcasts of hydrodynamic models in which distribution
of currents, water levels and water masses is estimated for time
steps from hours to days for the whole water column. Statistical
uncertainty of model predictions is routinely determined by cross
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validation against measurements. However, data are not freely
available, and acquisition of such data can be resource demanding.
Adding to this, hydrodynamic data are normally not readily avail-
able in the form habitat features (e.g. eddy or frontal activity), and
these features require post-processing of flow parameters.

Coupled to hydrodynamic models, water quality models may
provide important dynamic covariates like water transparency,
oxygen and chlorophyll. Hindcasts of water quality parameters
are provided by only few institutes worldwide and, like for the
hydrodynamic data, acquisition of such time series can be resource
demanding.

Data on prey distributions are rarely available for larger areas at
the required spatio-temporal resolution. If available, data on ben-
thic invertebrates and plants are typically describing mean distri-
butions with no or limited information about statistical uncertainty,
and can only be used as static covariates.

Recently, in response to the legal requirements of the EU Habi-
tats Directive, coarse-scale benthic habitats or landscapes have
been mapped according to the EUNIS classification system5 and 5 www.eunis.eea.europa.eu

are, or will become, freely available. Although these maps provide
a new source of information about the geography of the seabed
they mainly reflect geomorphological differences, and convey only
limited information about the distribution of plant and animal com-
munities. Statistical uncertainty associated with these data has been
estimated for some but not all areas.

Data on the distribution of fish abundance is available at a coarse
resolution from seasonal fish resource surveys coordinated by ICES,
and undertaken in most European shelf seas. Although the data
covers a wide range of species variable catchability means that data
on several potentially important prey species is limited, for example
sandeels Ammodytidae is limited. Information on fish distribution
is generally not available at higher resolutions, and some resources
are generally needed to acquire the data.

The data layers now freely available and showing coarse-scale
benthic habitats and landscapes include information on surface
sediments and bathymetry. In many cases, surface sediment dis-
tribution has been estimated based on interpretation of available
data, and so the quality of these data varies depending on the de-
gree of habitat mapping. Unfortunately, indications of statistical
uncertainty are generally not provided with the geological data
layers.

Detailed bathymetric measurements are available from most Eu-
ropean seas, yet even for areas like the North Sea and the Celtic
Sea, regions exist in which rather few depth samples have been
obtained. Accordingly, available GIS maps showing water depths
for extended areas of sea bed are interpolations from depth mea-
surements, and hence estimated depths possess a variable and often
undisclosed amount of uncertainty.

Data on the distribution of pressures can be split into dynamic
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and static data. AIS (Automatic Identification System) monitoring
now provides data on the density of ships in many areas, for vari-
ous temporal and spatial scales. Provision of large amounts of data
may be resource demanding. The coverage of AIS stations is far
from complete, and even for areas like the North Sea coverage of
ship activity is highly variable. Yet, for coastal areas AIS measure-
ments are available in rather high spatial resolution, and constitute
a useful indicator of potential disturbance from ships. Static data on
many pressure covariates are easily obtained, including location of
coastal developments and coastal and offshore infrastructures.

9.2.1 Covariate relevance

As covariates reflect processes at different scales it is critical at an
early stage when conceptualising the model, to assess the resolution
of predicted distributions required to meet the aim of the study. In
most impact assessments related to offshore renewables the project
footprint and impacted area comprise less than 20 km2. This means
that covariates involved in processes affecting the distribution of
target species at a relatively small scale should be identified. In
addition, in order to investigate distributions at the scale of an in-
dividual renewables project, it is necessary to partition the variance
into appropriate scales of ecological organisation. This is because
a pattern generated by an ecological process at a particular scale
will be masked by patterns generated by other processes at both
larger and smaller scales (Ciannelli et al., 2008). Thus, to describe a
small-scale process such as the concentration of animals at a hydro-
graphical shelf front in proximity to a renewables project site, one
has to remove the masking effect of large-scale processes by iden-
tifying and controlling for them in the analyses. Similarly, in order
to describe a large-scale process such as a seasonal effect reflected
by sea temperature, one has to remove the noise from small-scale
processes by aggregating or smoothing the data or by employing a
hierarchy of models with covariates reflecting processes at different
scales.

To describe the effects of spatial gradients associated with marine
renewables and marine habitats over less than 10 km it is necessary
to achieve a spatial resolution of covariates at as fine a resolution as
possible. The covariates which have been found by a large number
of studies to be important structuring elements controlling the
aggregation of marine animals are bathymetry, surface sediments
and flow dynamics.

Bathymetry (and derived covariates like seabed slope and com-
plexity) is an important driver in the distribution of many ben-
thic and pelagic species, and at a fine scale discontinuities in the
bathymetry are often related to shallows, boundaries of water
masses and areas of frontal activity, which make them suitable
foraging areas for predators feeding on the sea bed as well as for
predators feeding on the higher densities of pelagic prey typically
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concentrated here. If flow data are available the intensity of pro-
cesses responsible for the enhancement of pelagic prey can be more
precisely described and used as covariates:

1. Hydrographic frontal activity (enhanced primary and secondary
production, ecotone effect);

2. Upwelling/downwelling (enhanced primary and secondary
production);

3. Eddy activity (prey retention);

4. Stratification of water column (enhanced primary and secondary
production).

Instantaneous data on salinity and temperature generally de-
scribe water masses while time series describe seasonal trends. In
both cases the effects on animal distribution will be coarse scale,
and hence should be used with care as covariates in studies related
to renewables.

Despite the aggregation of prey at frontal features. a spatial
mismatch between the distribution of marine mammals and that
of their prey is often observed locally (Torres and Read (2008),
Fauchald et al. (2011)). Thus, even if scientific data on the distri-
bution of prey abundance is only available at a coarse resolution,
this may actually be more useful than information on prey available
from surveys undertaken at a higher resolution. Contrary to the
situation for pelagic predators, animals feeding on benthic inver-
tebrates and plants show strong correlations with the distribution
of their food sources. Thus, fine-scale data on the distribution of
benthic plant and animal prey can provide important covariates in
models for benthic predators.

In the same way as for habitat and coarse scale covariates, the
scaling of pressure covariates should be assessed carefully at the
conceptual stage. Especially, one has to ensure that any masking
effect of pressures is identified and controlled for in the analyses.

9.3 Modelling recommendations

As with all analyses, the modelling approach should be chosen
with the objectives of the analysis in mind, however based on the
work contained in this report we make the following recommenda-
tions.

If pre and post impact type comparisons are of interest then
CReSS-based modelling (as implemented here for instance) is
recommended. This approach was best able to identify spatially
explicit impacts - concerning both the magnitude and location of
post-impact change. While model selection results regarding post-
impact change were disappointing across all three approaches for
the off-shore data, these results drastically improved under CReSS
based selection for the near shore data. Further, when CReSS chose
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incorrectly there were no serious adverse effects of doing so. For in-
stance, when CReSS failed to correctly choose the no-impact model,
redistribution (rather than a decrease) was typically chosen instead
and the results of these analyses clearly demonstrated no statisti-
cally significant differences when examined spatially. In contrast,
GAMs always chose redistribution (regardless of truth) and due to
the tendency to overfit, GAMs often systematically predicted in-
creases and decreases which didn’t exist and these were identified
as significant changes up to 30% of the time.

If baseline characterisation is the main focus (and post-impact
data is not, yet, available for instance) then CReSS would also be
the preferred methodological choice. CReSS performed similarly,
or better than GAMs, at approximating the underlying surfaces
but GAMs tend to under-report the uncertainty for models fit-
ted to data of this sort, and so any confidence intervals associated
with geo-referenced predictions (or covariates) are likely to be too
narrow. Additionally, model selection results may also be flawed
resulting in the retention of unrelated covariates, in models fitted to
baseline data.

The remaining parts of this section outline a general set of rec-
ommendations for modelling baseline monitoring and impact as-
sessment data. It is not intended to provide a comprehensive guide
to statistical modelling but instead covers crucial aspects of the
process. This process is also, often, iterative and the models are up-
dated in light of insights gained about the covariate relationships
and the noise component assumed for the model.

This section covers some of the main issues, and more details are
provided in the worked examples in sections 10 and 11.

9.3.1 Specifying a model

Asking a few general questions about the survey design and data
available can assist the analyst when specifying a model. While
this is by no means an exhaustive list, the following questions are
useful:

1. What is the nature of the response variable? Is the response of
interest continuous or discrete? Are there natural boundaries to
the response variable?
For example, are the response data counts bounded by zero?
and if the data are counts, are there large numbers of zeros? (e.g.
Figure 85)

Alternatively, are the response data presence/absence records,
bounded by 0 and 1? (Figure 86) The nature of the response
variable helps guide model choice, since some models explicitly
respect the natural boundaries of the response data and ensure
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Figure 85: Distribution of
count response data with the
zero counts included (left) or
excluded (right).

Figure 86: Distribution of
binary response data
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model predictions are returned within these boundaries. For
example, some models employ ‘link’ functions which can ensure
that impossible predictions are not returned by the model (e.g.
negative numbers of animals) and these functions are typically
dictated by the nature of the response variable and these natural
boundaries.

Additionally, if the data are counts and there are large numbers
of zeros (e.g. Figure 85) then the response data are likely to
be more variable than assumed under some model types (e.g.
overdispersed) and this variability must be permitted under the
model for credible results.

In some cases, dedicated approaches to response data with large
numbers of zeros can be used (e.g. so-called ‘zero inflated’ (ZI)
models) which treat the zeros in the response differently from
non-zeros depending on the assumed origin of the zero counts.

Zero inflated models were not considered here for two reasons:
there are currently no off-the-shelf ZI models that include either
smoother based terms (for the environmental covariates or a
spatial term) or residual correlation (along transects for instance).
It is, of course, possible to manually implement smoother-based
terms on the scale of the link function to address the smoother-
based issue (e.g. using the bs function in the splines package in
R for the environmental covariates) and even perhaps, develop
code to fit zero inflated mixed models, but these methods are
not widely available and therefore unlikely to be used in the
renewables industry.

2. What is the observation process like? Are all the animals at the
surface likely to be seen by the observer, or are they likely to be
harder to see at distance from the boat/plane? Are the focal ani-
mals ever underwater and therefore unavailable to be seen at the
surface by the observer?

If some animals are overlooked at the surface when they are
available to be seen, or they are unavailable to be seen because
they are underwater, then some attempt at inflating the observed
numbers of animals (by estimating the numbers that are missed)
should be made. This is crucial even if the user is only interested
in detecting changes pre and post impact. For instance, if these
detection issues are ignored then it’s possible that a change in
the detectability of the animals pre and post impact might be
mistaken for an impact-related effect. i.e. animal numbers might
appear to be substantially lower post-impact solely because
animals are harder to see post-impact (due to poorer sampling
conditions, for example). Distance sampling (Thomas et al., 2010)
is a widely used method developed to correct observed counts
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for the ones that are missed and can be implemented in a wide
variety of survey situations.

In relatively recent surveys, photographic or video technology
has been employed to capture images of the ocean surface in the
survey area. In these cases, while it is assumed that all animals at
the surface are correctly identified and detected, correction may
still be necessary to account for those animals underwater when
the images are captured.

3. How were the data collected? Were the observations sampled
randomly from a set of independent locations or is there some
natural order to the response data in space and/or time?
For example, were the counts sampled from a boat or plane travel-
ling along transects across the ocean on a set of surveyed days?

Observations collected close together in space/time are often
more similar than observations distant in space/time. For ex-
ample, consider Figure 87. The survey design consists of a set of
transects, and for a given X-coordinate consecutive animal counts
along the transects (in the Y direction) are typically similar. Here,
we see that locations with relatively large numbers of animals
are located close to each other.

Figure 87: Example count data
represented spatially. The rel-
ative size of the circles reflect
the size of the animal counts.
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Figure 88: GAM-based depth
relationship with animal num-
bers

While it is possible that the covariate data (which may have been
collected alongside the counts) could explain the similarities in
the counts along the transect lines, it is unlikely that this covari-
ate data will explain this correlation in the counts in full. These
patterns in the data, which are unexplained by the model, will
necessarily be allocated to the error (noise) term in the model,
which violates a crucial assumption for many widely used meth-
ods (e.g. GAMs). Some alternative methods (e.g. GEEs) explicitly
permit these patterns across space/time (e.g. along transects) as
a part of the noise component and thus should be considered for
response data of this sort.

While details about the survey design can assist the analyst in
choosing a modelling framework, the analyst does not need to
rely on this information alone; there are graphical ways and
formal statistical tests to assess if residual autocorrelation is an
issue for the model at hand.

Figure 89: GLM-based depth
relationship with animal num-
bers

4. What is the broad nature of the relationships between the con-
tinuous covariates and the response data? Are the numbers of
animals (or the presence/absence of animals) likely to rise and fall
(or fall and rise) as the covariate increases in value?
For example, animal numbers might tend to be low for shallow
depths, most common at moderate depths, and then found in
lower numbers again in the deepest waters (e.g. Figure 88).

Basic information about the covariate relationships helps the user
choose between linear and nonlinear models (e.g GLM/GLMMs
and GAM/GAMMs). Linear models, by default, do not accom-
modate covariate relationships which rise and fall with the re-
sponse, however nonlinear models permit both nonlinear and
linear relationships (e.g. Figures 88 and 89) since the linear re-
lationship forms a special case; when it doesn’t make biologi-
cal sense to expect a covariate relationship to rise and fall (or
vice-versa) with the response, this covariate relationship can be
specified to be linear (on the link scale).

Figure 90: Factor level (e.g.
seasonal) relationship with
animal numbers

Note: the linear/nonlinear model choice is not an issue for
factor-level covariates since ‘linear’ models are linear in their
parameters and thus estimate different coefficients for each level
of the factor variable (excepting the baseline level), e.g. Figure
90. GLMs and GLMMs can easily accommodate factor-level co-
variate relationships that rise and fall with the response (or any
shape) since the coefficients rise and fall with each factor-based
level.

Figure 91: Example of a lo-
calised impact effect; the true
surface is represented by the
orange surface and the black
points are those sampled from
the site.
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5. Is there a spatial element to the data? Is there a desire to include
a spatial term in the model as a proxy for unmeasured covariates?

For example, animal numbers (or the presence/absence of ani-
mals) at each spatial location will likely be due to a complex mix
of covariates, and many of these covariates will not be available
for inclusion in a model. This is likely to result in unmodelled
patterns in the response data across the surface which can be
approximated by a spatial smooth term.

There are a variety of ways to include spatial information in a
model ranging from the simple, and restrictive, inclusion of the
spatial coordinates as-is (separately) in a model, to including
a potentially complex surface which considers the coordinates
together. For instance, including spatial information separately
in a model (e.g. XPos and YPos) assumes that the relationship
between one of the coordinates (e.g. latitude) and the response,
is unaffected by changing values of the other (e.g. longitude)
and this is often unreasonable in practice. For this reason, more
complex surfaces are often considered which, for example, allow
the nature of the relationship between latitude and the response
to depend on values of longitude. This is typically closer to
reality and this added flexibility also aids more localised surface
features in animal distribution (such as ‘hotspots’ and impact-
related effects) to be identified.

Figure 92: Example of under-
fitting; the fitted surface un-
derstates the magnitude of
the impact and overstates the
range of the impact.

If an interaction-type surface for the spatial component is desired
there are basic choices about the nature of the surface flexibility,
worthy of consideration. For example, is the surface likely to be
evenly smooth? Or could the surface be highly uneven and ex-
hibit some areas which are relatively flat and other areas which
are highly structured (e.g. Figure 91)? Evenly smooth surfaces
can be well approximated using ‘global smoothing parameter’
methods which allocate a single parameter to surface flexibility
which applies across the whole surface. Highly uneven sur-
faces, however, are better approximated using ‘spatially adaptive’
methods, which allow the flexibility to vary across the surface.

The specification of the spatial surface can widen the model
selection task considerably, since spatially adaptive methods
typically require more parameters. However, choosing between
‘global smoothing parameter’ and ‘spatially adaptive’ methods
is a serious consideration. For instance, surfaces which have lo-
calised impact-related effects (e.g. in and around the installation,
Figure 91) but are fitted using models without sufficient flexi-
bility (i.e. the surface is under-fitted) are likely to return model
predictions which understate the magnitude at the impact site
and overstate the range of the impact (Figure 92).

Conversely surfaces that are too flexible about the impact site
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(or are overfitted to the response data), might overstate both
the magnitude and the range of the impact (Figure 93). Both
underfitting and overfitting are a problem in these cases, and
so attention must be paid to the performance of the surface,
particularly in and around the potentially impacted site(s).

Figure 93: Example of over-
fitting; the fitted surface over-
states the range and magni-
tude of the impact.

Choosing to employ a globally smooth or spatially adaptive
method can be considered as one part of the model selection pro-
cess. For instance, both approaches could be trialled and their
respective fits to the data compared. While this is a reasonable
approach, any over-fitting tendencies by either method will re-
sult in one of the approaches fitting better to the data, but worse
to the underlying function and this will be unknown to the user
(as seen in the work presented here). This could easily result in
an over-fitted surface being chosen.

If fitting two sets of spatial models is not an attractive option,
then one could view a global smoothing method as a special case
of a spatially adaptive method (since the latter can also return a
uniformly smooth fitted surface) and only fit the latter. For ex-
ample, the starting position of CReSS is a model with flexibility
allocated evenly across the fitted surface (using a space-filled de-
sign). Viewing a global smoothing method as a special case of a
spatially adaptive method means that the user still must rely on
the model selection routine employed by the spatially adaptive
smoothing method to choose appropriate model flexibility. How-
ever, the results shown here demonstrate that CReSS method
(coupled with SALSA model selection) was shown to perform
well at returning surfaces which were close to the simulated
truth.

In some cases, it may not be necessary or desirable to include a
spatial term in the model. For example, if only a small number
of key drivers dictate animal numbers, and these are included
correctly in a model, then the unexplained part of the response
across the spatial surface (post model fitting) will be patternless
noise. In that case, including a spatial term would not be prefer-
able and a model selection procedure ought to reflect this (by
not ‘choosing’ the spatial term). If there is some concern that in-
cluding a spatial element in a model will mask genuine covariate
relationships (and therefore the opportunity to gain biological
insights will be lost), trialling the spatial element in a model after
already considering the other covariates as candidates might be
preferred.

Another factor to consider for some monitoring and impact as-
sessment sites is the presence (and location) of any exclusion
zones which may exist within the survey area. These are sub-
areas inside the area of interest which are unavailable to the
animals, and typically include land forms (for marine mammals
and some birds). In these situations, recently developed smooth-
ing methods based on geodesic (as-the-animal-swims) rather
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than euclidean/straight line (as-the-crow-flies) distance should
be considered for the spatial element. The CReSS method also
allows for this (along with other newly developed methods, e.g.
SOAP) and should be implemented based on distances relevant
for the animals in these situations.

Figure 94: Example of a scat-
terplot showing the estimated
counts (obtained by Distance
sampling) with water depth;
here zero represents land and
negative values represent
depth in metres.

9.3.2 Exploratory Data Analysis; EDA

Exploration of the data is necessary to familiarise the user with
the data available for modelling. Even simple plots can help the
analyst identify any obvious errors in the data entry/download,
any large gaps in the covariate range and any outlying values in
the response data.
The user should also ensure the candidate covariates considered
are not too similar (‘collinear’) to avoid issues such as model
instability.

Once the input data have been corrected for imperfect detection
(when necessary), a modelling framework has been chosen (e.g.
CReSS coupled with GEEs), a set of candidate covariates identified,
and some thought dedicated to the broad nature of these covariate
relationships, some data exploration work is useful.

Figure 95: Example of a box-
plot showing the estimated
counts (obtained by Distance
sampling) with season

Typically the analyst has a set of covariates available as candi-
dates for the model – some of which may be categorical (i.e. de-
fined classes) and be trialled in a model as factor-level covariates6

6 Note, for a model to return coeffi-
cients for factor-level covariates, there
typically has be either non-zero counts
(in the case of count data models) or
both zeros and ones (in the case of
presence/absence data) in each level of
the factor. This can easily be checked
using simple numerical summaries.

or continuous in nature and be trialled as a linear or nonlinear
term. The creation of simple plots (e.g. scatterplots (Figure 94) and
boxplots (Figure 95)) can help the analyst identify any errors, any
large gaps in the covariate range and any large gaps in the response
data.

As a part of the exploratory process some checks should be
made to ensure that the covariates in the model don’t share too
much information with each other, regarding their relationship with
the response variable. Specifically, model covariates should not be
’collinear’ which results in unstable model predictions when essen-
tially the same information enters the model twice. The practical
consequence of including collinear variables together in a model is
that parameter uncertainty can be very high and indicate impor-
tant covariates should be excluded from a model (based on large
p-values). For this reason, objective measures to detect prohibitive
levels of collinearity (e.g. Variance Inflation Factors; VIFs (Fox,
2002)) ought to be used.
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9.3.3 Choosing model covariates

Choosing which variables to include in a model is an important
part of the modelling process; including too few variables makes
for poor predictions and including too many variables can make
predictions highly uncertain.

Sometimes, the user has an interest in choosing between a select
set of models chosen in advance (e.g. based on prior informa-
tion/analysis) but often models are chosen using automated
methods. If the automated approach is employed, efforts should
be made to choose from the full set of models available; this en-
ables the user to see how well all candidate models fit the data
and either present the best model or some aggregate of similarly
performing models.

Model selection involves fitting a set of preliminary models
to the data and discriminating between them using some pre-
determined criteria. Often a ‘full’ model is fitted to the data which
contains all of the covariates considered worthy of inclusion and
some type of model selection process is carried out. This can take
the form of ‘backwards selection’ (by fitting a full model and drop-
ping covariates deemed to be unimportant, e.g. based on p-values,
one by one) or the process can work in reverse and a ‘forwards
selection’ process adopted. The latter process starts with a model
containing a small number of ‘core’ covariates (or only the intercept
term) and covariates are added one-by-one as they are deemed to
be important to the response. Importance in this context can be
determined by objective fit criteria (e.g. QIC for GEEs) or is deter-
mined by associated p-values (for each covariate) which are smaller
than some chosen value (e.g. 0.05).

Stepwise selection combines the forwards and backwards meth-
ods, uses an algorithmic approach and can trial a large number of
models as a results. This process does not, however, guarantee to
trial every possible model and therefore some good model com-
binations might be overlooked, just by chance. In addition to this,
stepwise methods often only return the ’best’ model and there may
be other models which were trialled and were almost as good; the
user is typically blind to this and valuable insights might be lost.

For this reason, all possible subsets selection can be used instead
which involves comparing the fit criteria for all possible models
given a set of (carefully considered) covariates. For instance, for a
model with three candidate covariates, the fit of every one-covariate
model is compared with the fit of the possible two-covariate models
and the fit of the full model (containing all three). Owing to its
utility, this type of model selection is becoming commonplace as an
option in widely available software packages (including the MuMIn
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library in R).
An advantage of the all possible subsets procedure is that the

user is immediately aware of the performance of other (competing)
models and is able to make informed decisions about model choice
accordingly. For example, if the ‘best’ model has a very similar (vir-
tually indistinguishable) fit to an alternative model (with different
covariates) and the close fitting alternative model has more desir-
able covariates for practical reasons, then this model might be used
instead.

The all possible subsets procedure also lends itself easily to
model averaging. Here, if a single model is not a requirement
(or desirable), and some weighted combination of a set of ‘good’
models is permitted (or preferred) then model predictions can be
obtained under each model of interest and averaged in line with
their weights (determined by the objective fit criteria).

9.3.4 Evaluating the performance of the fitted model

The performance of the chosen model can be assessed by exam-
ining how close the model predictions are to the response data.
A good model should produce predictions which are close to the
input data and high fit scores.

Following the selection of the working model, the performance
must be examined and simple plots comparing the observed versus
fitted values (on the vertical and horizontal axes respectively) can
assess model fit. Here, a good fit is reflected by a one-to-one rela-
tionship between the observed data and fitted values based on the
model (Figure 96).

Figure 96: Example of a scat-
terplot showing the response
(corrected counts) with the
fitted values under a model.

In particular, model failings such as under or over-prediction are
evidenced by clusters of positive or negative residuals either with
respect to each model covariate or with reference to a prediction
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grid (Figure 97). In this case, a good mix of negative and positive
residuals across the survey area and a distinct lack of pattern indi-
cates the model fit is spatially adequate.

Figure 97: Example of a scat-
terplot showing the residuals
pre (left-hand side) and post
impact (right-hand side).

9.3.5 Diagnosing model problems

Modelling is an iterative process and statistical models must be
updated, where possible, in light of any inadequacies uncovered.
Specifically, it is important to interrogate the working model to
see if model assumptions are reasonable and the associated results
are defensible.

For any particular model, the user needs to understand under
what circumstances, and in what ways, does the model not de-
scribe the data well and convey these limitations to the reader
along with model results.

In particular, the fitted relationships should be examined for
parts of the covariate range which exhibit predictions which are
systematically too high (over-prediction) or too low (under-prediction).
This can easily be done using model residuals, post model fitting.

Ill-fitting covariate relationships can be diagnosed graphically us-
ing cumulative residual plots. Specifically, ’raw’ residuals (observed
values-predicted values) ordered by covariate value are summed
across the covariate range and compared with a horizontal refer-
ence line at zero. Systematic under (or over) prediction is signalled
by cumulative sums which are well separated from zero and are
persistently positive (or negative). For GLMs fitted to independent
data, the track of the cumulative sum observed for a particular data
set/model combination can be compared with a reference set of
cumulative sum tracks likely to be found under a ‘good’ model (e.g.
using the gof library in R), but the theory that underpins this com-
parison has only been recently developed for correlated data (Lin
et al., 2002) and has not yet been programmed into R.

While a reference set of cumulative sum tracks is not yet avail-
able in R and it might be difficult to evaluate the form of a covariate
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relationship in absolute terms, this diagnostic can be used to com-
pare covariate relationships across competing models.

For example, the improvements made by allowing depth to be
nonlinear on the link scale (fitted as a GAM rather than a GLM)
are evidenced by substantially smaller cumulative residuals and
more ‘mixing’ of positive and negative residuals (Figures 98 and
99). Cumulative residual plots can also be used to look for runs of
positive and negative residuals in observation order which aids in
the diagnosis of serial correlation (Figure 100, for example).

The details of the assumption checking that is appropriate de-
pends on the exact model fitted, however for GLMs and GAMs
(which are most commonly used for data of this sort), indepen-
dence in the noise component (the errors) is assumed and this must
be checked.

Correlation within surveys/transects/grid-cells can be be as-
sessed visually using empirical autocorrelation function plots (‘acf’
plots) or more formally diagnosed numerically using a ‘runs test’
(Mendenhall, 1982). The runs test is an numerical test for ‘random-
ness’ that has multiple uses in a modelling context, including the
diagnosis of ill-fitting covariate relationships. Put simply, the sign
(rather than the magnitude) of model residuals are tracked in order
and the number of uninterrupted sequences (‘runs’) of positive and
negative residuals are calculated (right hand plot in Figure 100).
The number of runs observed are then compared with the number
of runs expected7 when the values are random and too few (or too 7

E(T) =
2npnn

np + nn
+ 1

V(T) =
2npnn(2npnn − np − nn)

(np + nn)2(np + nn − 1)

many) runs signal the residuals are positively (or negatively) cor-
related. In particular, compelling evidence of positive correlation is
evidenced by a negative runs test statistic and a small p-value (e.g.
p < 0.01).
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Figure 98: Cumulative resid-
uals in depth order (left-hand
plot) and runs test profile
(right-hand plot) for a depth
relationship fitted using a
GLM.

Figure 99: Cumulative resid-
uals in depth order (left-hand
plot) and runs test profile
(right-hand plot) for a depth
relationship fitted using a
GAM.

Figure 100: Cumulative resid-
uals in observation order
(left-hand plot) and runs test
profile for time-ordered model
residuals (right-hand plot).
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The cumulative residual plots and associated runs test are useful
for one-dimensional covariates (e.g. Depth) but the user may ben-
efit from a visual representation of how the model fits to the data
spatially. For example, viewing the residuals on the prediction grid
(across the survey area) can also be represented spatially to enable
the user to ascertain if there are some areas of the surface which
are over (or under) predicted by the model. In particular, this will
help the user assess how well any ’hotspots’ (areas of high density)
predicted by the model are supported by the data, or if there are
correspondingly large residuals in these areas (e.g. Figure 97).

Figure 101: PRESS scores for a
fitted model. The labels refer
to individual blocks/cluster
numbers.

In addition to the diagnosis of systematic over or under predic-
tion, it is important to ensure model conclusions do not depend on
a small number of correlated clusters/blocks (e.g. transects) in the
data. For instance, it would be unwise to rely on a model which re-
turns different results when a small number of blocks/transects are
omitted from the analysis. For this reason, we should examine how
aspects of the model change when individual observations and/or
correlated blocks/clusters are removed from the analysis.

The PRESS statistic quantifies the sensitivity of model predic-
tions to removing each subject/observations. Here, model coeffi-
cients are re-estimated when each subject/observation is omitted
(one-by-one) and the sum of the squared differences between the
response data and the predicted values (when that subject is re-
moved) are found:

PRESSi =
J

∑
j=1

ni

∑
t=1

(yijt − ŷijt,−i)
2 (12)

where yijt represents the response values for transect i, on seg-
ment j at time point t and ŷijt,−i represents the predictions when
the i-th transect is omitted. Relatively large values signal the model
is sensitive to these subjects (e.g. Figure 101).

In contrast to the PRESS statistic, the COVRATIO statistic signals
the change in the precision of the parameter estimates when each
subject/observation is omitted. Values greater than one signal re-
moving the subject inflates model standard errors while values less
than one signal standard errors are smaller when that individual is
excluded (e.g. Figure 102).

Figure 102: COVRATIO scores
for a fitted model.

The PRESS and COVRATIO statistics are relative measures and
in the event that model predictions or measures of precision appear
particularly sensitive to omitted blocks, it would be prudent to
examine model conclusions based on models with and without the
potentially problematic blocks.

9.3.6 Interpreting modelling results

After the user is satisfied that model assumptions have been met
and the model is safe to interpret, there are some graphical and
numerical measures which should be examined. In particular, the
fitted covariate relationships should be examined and model coeffi-
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cients interpreted appropriately.

The uncertainty about the estimated parameters is crucial when
drawing conclusions based on a model. For instance, while some
model (impact-related) terms might be included in a model cho-
sen using objective fit criteria (e.g. the QAIC/QIC) there might be
considerable uncertainty about these estimates and it is important
to view these coefficients in light of the associated uncertainty.

For example the magnitude of the estimated pre/post impact dif-
ference might raise considerable concerns. However, if ’no-change’
post-impact is also plausible in light of the data (as indicated by
a 95% confidence interval about the impact parameter) then this
will not likely provide compelling evidence for a pre/post impact
difference.

In this case, the 95% confidence intervals might better serve as
‘best’ and ‘worst’ case scenarios for any impact-related differences
in animal numbers.

Figure 103: Example of a fitted
depth relationship in a model.

The fitted covariate relationships in a model can be identified
visually using ‘partial’ plots post model fitting. These partial plots
illustrate how the model relates each covariate to the response with
some perspective provided by confidence limits about the fitted
curve. The values on the vertical axis for these graphics are not
necessarily on the scale of the response data but reflects how the
response (on a ‘link’ scale) responds in relation to changing covari-
ate values under the model. The confidence limits about these fitted
relationships are almost as important as the curves themselves since
these enable the user to consider any curvature/patterns along
with the uncertainty in these relationships. Specifically, the details
of fitted curves which are highly uncertain are purely speculative
compared with fitted curves which are very precise. In this example
(Figure 103) animal numbers are predicted to increase as the water
becomes shallower, and peak in number at approximately 5 metres
in depth. The confidence intervals are also very narrow about this
fitted relationship enabling this interpretation.

The coefficients for factor variables (with reference to a baseline
coefficient) can also be viewed using partial plots. Here the confi-
dence intervals about the fitted coefficients tell us about plausible
values for the size of the coefficients for each factor level (e.g. differ-
ent seasons) differences between each non-baseline coefficient and
the baseline at zero (e.g. Figure 104).

Figure 104: Example of a fitted
factor variable in a model.

Parameter estimates, estimates of uncertainty and p-values as-
sociated with each model term are returned by default, and for
simple (usually linear) terms, just one coefficient and associated
p-value is associated and so, the assessment about statistical signifi-
cance for that term/parameter is easily ascertained.

However, in some cases more than one coefficient is attributed
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to a particular term (e.g. there are many coefficients involved in a
spatial term) and so assessing the statistical significance of a model
term requires considering the associated coefficients as a collection
(e.g. using Wald tests).

9.4 Quantifying the power to detect change

The inability to detect genuine post-impact changes in numbers
and distributions is a real concern for the marine renewables in-
dustry. For example, if a model returns large but highly uncertain
impact-related effects (which are not statistically significant due
to the high uncertainty) the user is left wondering if this result is
simply due to lack of power, or there is no underlying post-impact
change.

Alternatively only baseline data may be available, and the ques-
tion remains as to how likely the current sampling regime is to
detect future post impact change.

A ‘power analysis’ approach could be used to quantify the
chance that a genuine impact effect is detected. This could involve,
for example, manufacturing post-impact data based on what is
known about the survey design, the sampling frequency and the
response data pre-impact, and fitting a model which includes an
impact-related effect to the manufactured data. The success rate
of the data and modelling approach therefore at detecting a sig-
nificant impact effect can be determined based on repeated sets of
manufactured data.

While simple in concept, reliable power analysis results need to
be based on realistic features of the data such as over-dispersion,
nonlinearities and autocorrelation. In this piece of work, we did
not develop methods (and associated code) to quantify the power
to detect change in this setting but this could be considered in the
future and build on the work carried out here.
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10 Impact assessment for off-shore data; worked example

This section contains a worked example for a quantitative impact
assessment based on simulated off-shore data. We begin by describ-
ing how the data was manufactured and then detail the analysis
process. The analysis process involves:

1. correcting the observed counts for imperfect detection (to ac-
count for animals missed by the observers)

2. exploration of the data

3. model specification & fitting

4. diagnosing model faults

5. using the chosen model to make predictions & quantifying any
differences

6. expressing the uncertainty about covariate relationships and
associated model predictions

Finally, since the data in this case was manufactured we are able
to compare the results with the process used to generate the data –
the ‘truth’.

10.1 Manufacturing the data

The data were simulated based on off-shore survey data collected
before construction. An impact effect was then imposed which
reduced animal numbers in the impacted area and re-distributed
these animals to the south east of the study region (Figure 105); the
total number of animals before and after impact was constant.

Figure 105: Simulated densi-
ties of birds (per km2) before
impact (left) and after impact
(right) for the redistribution
scenarios. The grey star indi-
cates the centre point of the
impact and the black trian-
gle, the centre point of the
re-distribution.

Observed counts were then lifted from the simulated surfaces
in the form of line-transects, which were repeated seasonally (four
times), both before and after the ‘development’ (Figure 106). Im-
perfect detection was then imposed on these lifted counts to mimic
the observation process. This returned counts from 26 transects,
repeated 8 times with 9232 segments (each approx. 0.25 km2). Of
those segments, 654 contained detections and there were 2373 de-
tections in total.
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Figure 106: Observed data
before (left) and after impact
(right). Each cell is 0.5 km2 and
the colour represents mean
bird count.

10.2 Statistical analysis

The data analysis for the worked example involves correcting the
observed counts for imperfect detection, exploring the data, model
specification and fitting followed by some diagnostics. Following
the selection of an appropriate model, the model is used to make
predictions, generate ranges of plausible values for these predic-
tions (95% confidence intervals) and on this basis identify any spa-
tially explicit differences. The results produced in this section are
then compared with the surface used to generate the data in this
case.

10.2.1 Correcting for imperfect detection: Distance sampling

A half normal detection function (g(y)) was estimated based on the
distance sampling data (Figure 107) and a Cramer-von Mises (CvM)
goodness of fit test (H0: the fitted model is the true model) and a
qq-plot used to evaluate the quality of the fit. The fit was adequate
in this case; Figure 108 and the CvM test (p-value=0.7) confirm the
estimated detection function fits the data well.

From these results we can make the following interpretation.
"We are 95% confident that the scale parameter (which describes the
shape of the detection function) lies somewhere between 112.7 and
122.4, and that the average probability of detection is somewhere
between 0.568 and 0.571". So, approximately 60% of the birds were
detected and approximately 40% were missed.

Based on this result, the raw counts were inflated. The estimated
counts for each cell before and after impact are shown in Figure
109.
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Figure 107: Histograms of raw
distance data with the esti-
mated half normal detection
function overlaid. The fig-
ures show an example of two
different histogram bin widths.

Figure 108: QQ plot showing
goodness of fit for the fitted
detection function.

Figure 109: Mean bird counts
estimated from a distance
sampling analysis for before
(left) and after (right) an im-
pact event. Each cell is 0.25

km2 and the colour represents
mean bird count.
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10.2.2 Data exploration

Prior to model fitting, it is always a good idea to examine the re-
lationships between the available covariates and the response (e.g.
bird counts; Figure 110). In this case, birds were predominantly
seen in shallow waters, and few were seen in waters deeper than
15m. Further, the relationship between depth and bird numbers
appears to be non-linear. It is difficult to identify the nature of the
relationship between either season or impact and bird numbers due
to the large number of zeros in the data. In particular, there are no
outlying points evident – no large gaps in the range of any of the
candidate covariates or any outrageously large response values.

(a) (b)

(c)

Figure 110: Plots of (a) depth,
(b) Season and (c) Impact
against the estimated bird
counts.

10.2.3 Model specification

The count data were manufactured in this case, and so we know the
data are well described by an overdispersed Poisson distribution
(with a dispersion parameter of 7.03). Typically, the data are not
synthetic and thus the nature of the process generating the counts
is unknown, however it is often appropriate to model count data
using a quasi-poisson error structure and this is the approach used
here. The main candidate terms considered for the model were:

• a smooth term for depth (s(Depth))
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• a spatial term (s(XPos,YPos))

• a four-level factor variable term for season

• a two-level factor variable term for impact (e.g. windfarm instal-
lation/operation)

In order to quantitatively assess if a post-impact re-distribution
had occurred, a spatial-impact interaction term was also included.
An ‘offset’ was also specified to allow for variable search effort
across the estimated counts. For example, most segments were 0.25

km2, but some contained land resulting in a smaller search area.
For prediction, the area was given as 1km2 and so any predictions
will be a bird density, per km2.

Variance Inflation Factors (VIFs) were used to assess co-linearity
between covariates and measure the extent of standard error in-
flated incurred by fitting covariates together in the model. Here,
Generalised VIFs (GVIFs; Fox and Monette (1992)) are appropriate
since some of the candidate covariates attract more than one param-
eter, and GVIFs are adjusted for the number of parameters (tech-
nically the degrees of freedom) fitted for each covariate (GVIFadj =
GVIF1/2∗D f ). Each GVIFadj quantifies the decrease in precision of
estimation due to collinearity (equivalent to

√
VIF). For example, a

GVIFadj of 2 means that the confidence intervals are twice as wide
as they would be for uncorrelated predictors.

In this case, the variables are not highly collinear (Table 10);
‘Impact’ has the highest GVIF score and this is not prohibitively
high. Remedial action is recommended if values are as high as

√
5.

Variable GVIF Df GVIFadj

Depth 6.54 3 1.37

Season 1.00 3 1.00

s(XPos,YPos) 3670 10 1.51

Impact 7.52 1 2.74

s(XPos,YPos):Impact 5000 10 1.53

Table 10: Variance inflation
factors to assess co-linearity
amongst covariates. GVIF is a
generalised variance inflation
factor, and GVIFadj is GVIF
adjusted for the degrees of
freedom (GVIF1/2∗D f ).

10.2.4 Model Fitting and model selection

A CReSS-GEE framework was employed here to estimate the
smooth terms in the model whilst allowing for positive autocor-
relation in model residuals. The fitted model included a relatively
smooth function specified for depth (with just 3 parameters) and
a smooth spatial term which employed SALSA-based model se-
lection to determine flexibility. SALSA can also be used to choose
the smoothness of the depth relationship (see the user guide for
the MRSea package for more details). The season and impact terms
were fitted as factor variables. In this case, we have very few terms
in the model and it was decided to use p-value based model selec-
tion (since these are corrected for residual correlation under a GEE
approach).
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10.2.5 Results

A very low dimensional smooth term was chosen for the spatial
element (d f = 6) and the smooth surface was spatially adaptive;
the surface comprised a mixture of local and globally acting basis
functions.

Despite the covariates included in the model, there was com-
pelling evidence for time-based correlation in (Pearson) residuals; a
runs test returned a very small p-value (p << 0.05). As a result, a
GEE fitting framework was employed using a transect-season-impact
blocking structure – here residuals are permitted to be correlated
within transects, within seasons, and either pre or post impact. This
structure returned 208 unique transect-season-impact blocks with up
to 26 segments in each block. For some blocks the correlation is low
at any lag, whilst others have high correlation even for residuals 10

time points apart (Figure 111).

Figure 111: Plot of the esti-
mated correlation in residuals
at various lags for the set of
blocks (grey lines). The esti-
mated mean correlation at each
lag is indicated in red.

The output (Figure 112) shows p-values associated with each
coefficient which collectively make up the smooth terms for depth
(d f = 3), the spatial term (d f = 6), and the factor variables for
impact (d f = 1) and season (d f = 3). While useful in some cases,
backwards model selection using p-values requires a single (Wald
test based) p-value for each candidate covariate which does not
depend on the order in which the terms are fitted in the model
(i.e. they are marginal p-values). Based on these marginal p-values,
Depth, Season, the spatial-impact interaction term are all highly
significant (Table 11) and thus were retained in the model.

To investigate if there was a change in average numbers pre and
post impact, the spatial-impact interaction term was removed and
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the remaining terms re-fitted in the model; there was no evidence
for an overall difference (p = 0.5460) pre and post impact.
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Coefficients:
Estimate Std.err Wald Pr(>|W|)

(Intercept) -1.04e+01 1.75e+00 35.68 2.3e-09 ***
bs(Depth)1 5.28e+00 2.00e+00 6.93 0.0085 **
bs(Depth)2 1.52e+01 1.72e+00 77.72 < 2e-16 ***
bs(Depth)3 1.25e+01 1.92e+00 42.42 7.4e-11 ***
as.factor(Season)2 -1.26e+00 1.45e-01 75.14 < 2e-16 ***
as.factor(Season)3 -1.20e+00 1.79e-01 45.04 1.9e-11 ***
as.factor(Season)4 -8.63e-01 1.40e-01 37.98 7.1e-10 ***
LocalRadialFunction()b1 -5.07e+05 3.36e+05 2.28 0.1310
LocalRadialFunction()b2 3.80e+06 4.61e+05 67.71 2.2e-16 ***
LocalRadialFunction()b3 -6.06e+00 2.16e+00 7.89 0.0050 **
LocalRadialFunction()b4 -9.13e+06 2.22e+06 16.99 3.8e-05 ***
LocalRadialFunction()b5 4.29e+02 7.46e+01 33.15 8.5e-09 ***
LocalRadialFunction()b6 7.24e+00 2.39e+00 9.19 0.0024 **
as.factor(Impact)1 -1.78e-01 2.44e-01 0.53 0.4651
LocalRadialFunction()b1:as.factor(Impact)1 -6.93e+05 4.54e+05 2.33 0.1269
LocalRadialFunction()b2:as.factor(Impact)1 7.39e+05 6.24e+05 1.40 0.2368
LocalRadialFunction()b3:as.factor(Impact)1 -2.26e+00 3.11e+00 0.53 0.4679
LocalRadialFunction()b4:as.factor(Impact)1 1.22e+06 3.33e+06 0.13 0.7139
LocalRadialFunction()b5:as.factor(Impact)1 -2.82e+01 1.08e+02 0.07 0.7937
LocalRadialFunction()b6:as.factor(Impact)1 2.67e-02 3.26e+00 0.00 0.9935
---

Figure 112: Model output from
our fitted GEE model. Note:
the covariate labels have been
shortened so as to fit on the
page.

Variable p-value
Depth < 0.0001
as.factor(Season) < 0.0001
s(X,Y) < 0.0001
as.factor(Impact) 0.5468

s(X,Y):as.factor(Impact) 0.0081

Table 11: GEE based p-values
(to 4 decimal places) for a
CReSS model with SALSA
knot placement. p < 0.05 sug-
gests that the covariate should
be retained in the model.

Partial plots (Figure 113) allow the examination of how the one-
dimensional (non-interaction based) covariates (e.g. depth & sea-
son) feature in the model, and based on the extent of the associated
uncertainty (95% confidence intervals) the user can decide whether
the smooth functions are justified. In this case, the season coeffi-
cients (Figure 113) demonstrate that, on average, significantly fewer
animals are present in seasons 2, 3 & 4, compared with season 1.
The confidence intervals on the season coefficients indicate little dif-
ference in the differences between the three levels and the baseline
season, given the other covariates in the model.

The partial plot for depth (Figure 113) indicates a declining non-
linear relationship with increased depth (i.e. fewer birds present in
deeper waters) and that birds are more likely to be found in waters
approximately 3-8m deep. The tight pointwise confidence intervals
about the fitted function suggest a relatively precise relationship
with depth. If the confidence intervals for depth were, instead, very
wide it would be reasonable to assume depth could be adequately
modelled as a linear term.
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(a) (b)

Figure 113: Partial Plots for (a)
season and (b) depth.

10.2.6 Diagnostics

The plot of observed versus fitted values suggests the fit of the
model is not fantastic (Figure 114) and that the very high numbers
of animals are difficult to predict. This is very common for very
noisy data; the largest values tend to be under-predicted and many
of the observed zeros are over-predicted. The relatively low fit
scores (R2

MARG = 0.14 and rc = 0.25) confirms the data are noisy
and difficult to predict.

Note, the covariates used to manufacture the data were also
supplied to the model for fitting, and so these low values are due
to the high noise in the data rather than signify that important
covariates are missing.

Figure 114: Assessing model
fit: observed vs fitted values.
The black line indicates where
data should lie for a perfect
fit. The data points are ad-
justed for over-plotting and the
heavier the shading, the more
over-plotting.

If a model is correctly specified (as it is here), we expect to see no
pattern in a plot of fitted values against the residuals. Additionally,
since we have a Poisson-based model (with extra-Poisson variation)
the variance of the residuals is expected to increase with the fitted
values and so the residuals must be adjusted for this if we are to
see no patterns; for this reason scaled Pearsons residuals are used.
In this case, while the raw points may appear to show patterns
in the associated plot (due to large amounts of over-plotting), the
locally weighted least squares regression line does not indicate any
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unusual patterns (Figure 115).

Figure 115: Assessing model
fit: fitted vs scaled Pearsons
residuals. The red line is a
locally weighted least squares
regression to indicate pat-
tern in the plot, which might
otherwise be hidden due to
over-plotting. The data points
are adjusted for over-plotting
and the heavier the shading,
the more over-plotting.

Systematic over or under prediction can be diagnosed using
cumulative residual plots, and in this case depths around 6-9m ap-
pear to be systematically over-predicted while depths either side
of this range are under-predicted (Figure 116). The grey line in
the background of the plots indicates what we would expect if we
were modelling depth with a very large number of parameters. In
this case, more ‘mixing’ of positive and negative residuals around
the zero line would be ideal, the improvements seen by modelling
depth using a nonlinear function compared with a linear depth
relationship are evident (Figures 116 and 117). Perhaps, implement-
ing model selection for the depth relationship (to add flexibility
perhaps) using SALSA (see the user guide for MRSea) would im-
prove the associated cumulative residual plot.
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Figure 116: Cumulative resid-
ual plots (left) and runs pro-
files (right) for residuals or-
dered by depth. The blue
points are the residual values,
the black line represents the
cumulative residuals. The grey
line in the background is what
we would expect the cumu-
lative residuals to be if depth
was modelled correctly.

Figure 117: Cumulative resid-
ual plots (left) and runs pro-
files (right) for residuals or-
dered by depth when depth
is fitted as a linear term in the
model.

Figure 133 indicates that the smaller predicted values are system-
atically over-predicted (a common issue since zeros can never be
predicted exactly under the model) and the larger predicted values
are under-predicted. This confirms what was seen in the plot of ob-
served vs fitted values (Figure 114) where the very large values are
hard to predict. Additionally, the earlier observations (pre-impact)
are over predicted while the latter observations (post-impact) ap-
pear to be under-predicted (Figure 119).

The runs plots test for randomness of the residuals given the or-
der of the data, and in all cases the p-values are < 0.05 and indicate
positive correlation (right-hand plots in Figures 116 –119). The mix-
ing is best for the residuals in time order (i.e. there are lots of runs),
but this number is still fewer than would be expected if the residu-
als were random. This confirms that modelling temporal correlation
through the use of GEEs is justified.
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Figure 118: Cumulative resid-
ual plots (left) and runs pro-
files (right) for residuals or-
dered by the predicted value.
The blue points are the resid-
ual values and the black line
represents the cumulative
residuals.

Figure 119: Cumulative resid-
ual plots (left) and runs pro-
files (right) for residuals or-
dered by the index of obser-
vations (ordered temporally).
The blue points are the resid-
ual values and the black line
represents the cumulative
residuals.

The quality of the spatial predictions can be assessed by examin-
ing model residuals spatially (Figure 120). This can help the user to
ascertain if some areas of the surface are over or under-predicted.
In this case, the highest residuals lie in the central area and down
to the eastern side where the highest counts were observed; this is
not surprising given the very large numbers were difficult to pre-
dict. There also appears to be some over-prediction in the area to
the east of the area pre-impact but no corresponding systematic
under-prediction.

Figure 120: Raw residuals
before impact (left) and after
impact (right). These residu-
als are observed-fitted values
and so positive residuals im-
ply under-prediction and
negative residuals imply over-
prediction.

To ensure model conclusions do not depend on a small number
of blocks in our data, the COVRATIO and PRESS statistics should
also be examined (Figure 121). The COVRATIO plot (left hand plot)
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indicates the change in precision of the parameter estimates when
each block is removed and so scores less than one indicate that
the removal of the block will increase precision of the parameter
estimates (and vice versa for scores> 1). In particular points which
lie far below the lower quantile are worth investigating further.

In this case there is a marked decrease in the standard errors
when blocks ‘830’, ’2210’ or ’2411’ are removed. The latter block
contains the high numbers of birds as a part of the post-impact
redistribution and removing blocks with large numbers (such as
these) will naturally lower the variance. Blocks ’830’ and ’2210’ also
both have relatively high counts in each, and so removing these
blocks would also naturally lower the variance.

The PRESS statistic (right hand plot) quantifies the sensitivity of
model predictions to removing each block, and model predictions
are sensitive to blocks: ‘2511’, ‘2311’ and ‘2411’ in particular, if
removed. These are transects 23-25 in season 1 post-impact. The
sensitivity of model predictions to these transects is unsurprising
since these are the sites for the re-distribution post-impact (second
to fourth transects in from the right hand side of Figure 109).

In this case, we are not alarmed by the blocks that the model is
sensitive to and so we are happy to use the model for interpretation
and prediction.



statistical modelling of seabird and cetacean data: guidance document 121

(a)

(b)

Figure 121: Plots of influence
measures. (a) COVRATIO
statistic; the dashed grey lines
indicate the lower 2.5% and
upper 97.5% quantiles of the
statistics and (b) PRESS statis-
tic; 95% of the statistics fall
below the dashed grey lines.
Labelled points on both plots
are outside the grey dashed
line(s) and are labelled with
the identifier for the block that
has been removed to create the
statistic (not an observation
number).
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10.2.7 Prediction and Inference

Since we are satisfied with the model we can make predictions
pre and post impact, and calculate any pre-post differences, across
a grid in the area of interest. We can also make inference about
these predictions and any differences, by combining the parameter
uncertainty associated with the detection function and model fitting
processes.

Based on the model, declines in bird density in the central region
and increases in the south east of the study region are evident post-
impact (Figure 122). Additionally, since the central region is where
the impact was imposed the results suggest the birds have moved
from the impact site to the south-eastern area post-impact.

Alongside model predictions, the upper and lower confidence
intervals pre and post impact (Figure 123) are crucial in putting the
predictions into perspective, and ultimately in determining genuine
differences. In this case, the relatively high density of birds in the
south-east persist even in the lower confidence limits. While the
upper and lower confidence limits pre and post impact are useful, it
is impossible to tell (from these figures alone) where any significant
differences may occur, and for this reason the mean differences
pre and post impact are also of interest (Figure 124. In this case,
the mean differences in birds/km2 pre and post impact are clear;
there is a significant decline in animals around the impact site (even
though the location of the impact was unknown to the model)
and a significant increase in animals in the south-east, implying
redistribution.

Figure 122: Predictions of bird
density (birds/km2) from the
fitted model for before (left)
and after (right) an impact
event. The grey triangles indi-
cate the location of the 6 knot
locations for the smooth of
space and the grey star is the
site of the impact event (e.g. a
wind turbine development)
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(a)

(b)

Figure 123: (a) upper and
(b) lower 95 percentile confi-
dence intervals of bird density
(birds/km2) from the fitted
model for before (left) and
after (right) an impact event.

Figure 124: A plot of the mean
difference in predicted bird
density (birds/km2) before and
after impact. Positive values
indicate more birds post im-
pact and negative values fewer
birds post impact. Significant
differences were calculated
using percentile confidence
intervals: ‘+’ indicates a signif-
icant positive difference and
‘o’ a significant negative one.
The grey star is the site of the
impact event.
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10.3 Comparison to the Truth

In this case, we manufactured the data and so are able to compare
our modelling results with the surface(s) which generated the data.

The results obtained by the model were in line with the surfaces
generated. For instance, the detection function scale parameter
(120) was contained within the 95% confidence interval (112.7,
122.4) and the generated data were over-dispersed and positively
correlated in blocks – both features which were recovered by the
model.

The simulated redistribution post-impact was also recovered
(via the significant interaction term), and the redistribution pat-
terns were consistent with data generation (Figure 124). Further,
there was no estimated change in average numbers post impact
(as evidenced by the impact related p-value for the non-interaction
model), a feature that is also true under the model.
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11 Impact assessment for off-shore data; worked example

This section contains a worked example for a quantitative impact
assessment based on simulated near-shore data. We begin by de-
scribing how the data was manufactured and then detail the analy-
sis process. The analysis process involves:

1. exploration of the data

2. model specification & fitting

3. diagnosing model faults

4. using the chosen model to make predictions & quantifying any
differences

5. expressing the uncertainty about covariate relationships and
associated model predictions

Finally, since the data in this case was manufactured we are able
to compare the results with the process used to generate the data –
the ‘truth’.

Note: for brevity we have assumed the reader is familiar with the
off-shore example.

11.1 Manufacturing the data

The near-shore data were generated using pre-impact observations
and augmented by imposing an impact in the central of the study
region. The impact caused a reduction in animal numbers in the
area which was matched by a re-distribution into the southern part
of the study area (Figures 125 and 126); there was no change in the
total number of birds pre and post-impact.

Figure 125: Simulated truth
before impact (left) and after
impact (right). The grey star
indicates the centre point of
the impact and the grey tri-
angle, the centre point of the
re-distribution. The grey circle
is the location of a cliff-top
observer.
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Figure 126: Grid cell identifiers
for the study region. The grey
circle is the location of a cliff-
top observer and the star the
site of the impact event.

The observed data (e.g. Figure 127) were lifted from this simu-
lated reality and correlated noise (with extra-Poisson variability)
was added. Each observation cell was approximately 1 km2 except
in cases with land, where the effort in those cells was less than one.

Figure 127: Observed data
before (left) and after impact
(right). Each cell is 0.5 km2 and
the colour represents mean
bird count.

11.2 Statistical analysis

The data analysis for the worked example involves exploring the
data, model specification and fitting followed by some diagnostics.
Following the selection of an appropriate model, the model is used
to make predictions, generate ranges of plausible values for these
predictions (95% confidence intervals) and on this basis identify
any spatially explicit differences. The results produced in this sec-
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tion are then compared with the surface used to generate the data
in this case.

11.2.1 Data exploration

Animals were predominantly seen in the morning hours (7am-
12pm; Figure 128) while fewer birds were seen very early or very
late in the day. Further, the relationship between observation hour
and bird count appears to be non-linear. It is difficult to identify
any relationship between tidal state or impact and bird counts due
to the large number of zeros in the data.

(a) (b)

(c)

Figure 128: Plots of (a) obser-
vation hour, (b) tidal state and
(c) Impact against the observed
bird counts.
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11.2.2 Model specification

The data are over-dispersed counts (and generated using a disper-
sion parameter of 9.19) and so a model with quasipoisson errors
was fitted.

The main candidate terms considered for the model were:

• a smooth term for Observation Hour (s(ObservationHour))

• a spatial term (s(XPos,YPos))

• a three-level factor variable term for tidal state (FloodEbb)

• a two-level factor variable term for impact (e.g. windfarm instal-
lation/operation)

In order to quantitatively assess if a post-impact re-distribution
had occurred, a spatial-impact interaction term was also included
in the model. An ‘offset’ was also specified to allow for variable
search effort across the estimated counts. For example, most seg-
ments were 1km2, but some contained land resulting in a smaller
search area. For prediction, the area was given as 1km2 and so any
predictions will be a bird density, per km2.

In keeping with the off-shore example, VIFs were used to assess
prohibitive levels of collinearity. In this case, however, there were no
collinear variables (Table 12).

Variable GVIF Df GVIFadj

ObservationHour 1.05 3 1.01

FloodEbb (tide state) 1.05 2 1.01

s(X,Y) 5.46 ×104
15 1.44

Impact 5.54 1 2.35

s(X,Y):Impact 1.74 ×105
15 1.50

Table 12: Variance inflation
factors to assess co-linearity
amongst covariates. GVIF is a
generalised variance inflation
factor, and GVIFadj is GVIF
adjusted for the degrees of
freedom (GVIF1/2∗D f ).

11.2.3 Model Fitting and model selection

A CReSS-GEE framework was employed here to estimate the
smooth terms in the model whilst allowing for positive autocor-
relation in model residuals. The fitted model included a relatively
smooth function specified for observation hour (with just 3 param-
eters) and a smooth spatial term which employed SALSA-based
model selection to determine flexibility. SALSA can also be used
to choose the smoothness of the observation hour relationship (see
the user guide for the MRSea package for more details). The tide
state and impact terms were fitted as factor variables. In this case,
we have very few terms in the model and it was decided to use p-
value based model selection (since these are corrected for residual
correlation under a GEE approach).
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11.2.4 Results

A moderately low dimensional smooth term was chosen for the
spatial element (d f = 15) and the smooth surface was spatially
adaptive; the surface comprised a mixture of local and globally
acting basis functions.

Despite the covariates included in the model, there was com-
pelling evidence for time-based correlation in (Pearson) residuals; a
runs test returned a very small p-value (p << 0.05). As a result, a
GEE fitting framework was employed using a grid code-year-month-
day blocking structure – here residuals are permitted to be corre-
lated within grid cell-days (e.g. days within months and years).
This structure returned 5576 unique blocks with up to 11 observa-
tions in each block. For some blocks the correlation is low at any
lag, whilst others have high correlation even for residuals 7 time
points apart (Figure 129).

Figure 129: Plot of the correla-
tion in residuals for each block
(grey lines). The mean correla-
tion at each lag is indicated in
red.

The model returned p-values for observation hour (d f = 3), tide
state (d f = 2), the spatial term (d f = 15), and the factor variables
for impact (d f = 1). There are also 15 spatial parameters describing
the difference between a pre and post-impact surface (Table 13).
Based on these marginal p-values, Observation hour, tide state, and
the spatial-impact interaction term are all highly significant (Table
??) and thus were all retained in the model.

To investigate if there was a change in average numbers pre and
post-impact, the spatial-impact interaction term was removed and
the remaining terms re-fitted in the model; there was no evidence
for an overall difference (p = X) pre and post-impact.

Based on this analysis, average numbers of animals appear to
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Variable p-value
Observation Hour < 0.0001
FloodEbb (tide state) < 0.0001
s(X,Y) < 0.0001
Impact 0.561

s(X,Y):Impact 0.019

Table 13: GEE based p-values
(to 3 decimal places) for a
CReSS model with SALSA
knot placement. p < 0.05 sug-
gests that the covariate should
be retained in the model.

be significantly higher for ‘Slack’ tidal state compared with the
baseline (‘Ebb’) state (Figure 130(a)), however there is no significant
difference between numbers in Flood and Ebb tide states. The rela-
tionship for observation hour (Figure 130(b)) indicates a non-linear
relationship with bird counts (i.e. fewer birds present in the very
early and later hours of the day) which peaks at about 10am. The
confidence intervals about this relationship are also small which
means some interpretation about the curve is possible – if the con-
fidence intervals for observation hour were, instead, very wide and
in particular a straight line would suffice, observation hour could
instead be modelled as a linear term.

(a) (b)

Figure 130: Partial Plots for (a)
tidal state and (b) Observation-
Hour.
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11.2.5 Diagnostics

The fit plot shows the model is not ideal (Figure 131; R2
MARG = 0.23

& rc = 0.37) and in particular, (but not unusually) the very large
values are difficult to predict. Of note is the large number of points
in the plot and thus, it is difficult to see what proportion of points
is not well described by the model.

Figure 131: Assessing model
fit: Observed vs fitted values.
The black line indicates where
data should lie for a perfect
fit. The data points are ad-
justed for over-plotting and the
heavier the shading, the more
over-plotting.

There is no evidence for unmodelled patterns in the mean-
variance relationship as evidenced by the locally weighted least
squares regression line (Figure 132). For this reason, we are happy
with the variance assumed under the model, in this case.

Figure 132: Assessing model
fit: Fitted vs scaled Pearsons
residuals. The red line is a
locally weighted least squares
regression to indicate pat-
tern in the plot, which might
otherwise be hidden due to
over-plotting. The data points
are adjusted for over-plotting
and the heavier the shading,
the more over-plotting.

A plot of cumulative residuals allows us to see if there is any
systematic over or under-prediction. The left hand plots in Figures
133-135 show cumulative residuals across the range of observation
hours (Figure 133), predictions (Figure 134) and, by ordering the
data, temporally (Figure 135).

Under the model, observation hours between 8-11am are sys-
tematically under-predicted (Figure 133(a)) while animal numbers
outside of this time period are over-predicted. This relationship
might further be improved if model selection is used to choose the
flexibility of the term, and while the improvements are clear over
modelling observation hour as a linear term (Figure 133(b)) allow-
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ing the relationship to be more flexible shows much better mixing
about the line (Figure 133(c)). The runs profiles are more difficult to
interpret for discrete variables (Figure 133(right)) and regardless of
how observation hour was fitted in the model, the runs tests signal
positive correlation.

In summary, the smaller predictions (1-3 birds) appear to be too
small, while over-prediction was the tendency up to approximately
13 birds (Figure 134). Thereafter both under and over-prediction are
evident, but there are fewer points to consider. Temporally, there
is a good deal of mixing about the horizontal line (Figure 135) and
while there are a large number of corresponding runs, these are
still fewer than expected for random residuals. We have modelled
residual correlation using GEEs, and so are unconcerned about this
result.
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(a)

(b)

(c)

Figure 133: Cumulative resid-
ual plots (left) and runs pro-
files (right) for residuals or-
dered by Observation Hour.
(a) the results of the current
model, (b) when Observation
Hour is fitted as a linear term
and (c) when it is fitted with
three knots at the 25, 50 and
70

th quantiles. In the cumu-
lative residual plots, the blue
dots are the residual values,
the black line the cumulative
residuals and the grey line in
the background is based on a
curve with an extremely large
number of parameters (an
over-fitted model).
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Figure 134: Cumulative resid-
ual plots (left) and runs pro-
files (right) for residuals or-
dered by predicted value. In
the cumulative residual plot,
the blue dots are the residual
values and the black line the
cumulative residuals.

Figure 135: Cumulative resid-
ual plots (left) and runs pro-
files (right) for residuals or-
dered by index of observations
(ordered temporally). In the
cumulative residual plot, the
blue dots are the residual
values and the black line the
cumulative residuals.
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Spatially, the cell to the right of the cliff top observer is under-
predicted by the model both pre and post-impact (Figure 136) but
otherwise, there are no compelling spatial patterns and so does not
give rise to any concerns.

Figure 136: Raw residuals
before impact (left) and after
impact (right). These residu-
als are observed-fitted values
and so positive residuals im-
ply under-prediction and
negative residuals imply over-
prediction.

The COVRATIO statistics signal a marked decrease in the stan-
dard errors when block ‘d69810’ is removed (Figure 137) which
corresponds to cell ‘d6’ in year 2009 (the first of the two years be-
fore impact), month 8 and the 10

th day of the month. The two cells
above (‘d6111116’ and ‘d7964’) are also notable in this regard. High
values for these blocks are unsurprising – they all have very high
bird counts, compared with other blocks, and so thus add consider-
ably to the variability in the data. This is routine for count data and
so is of no concern here.

The PRESS statistic (Figure 137(b)) signals that model predic-
tions are sensitive to blocks ‘c710213’, ‘c710210’ and ‘d6111116’.
These cells area all ‘before’ impact and all contain large counts and
so it is unsurprising to find they stand out as influencing model
predictions. In this case we can see why the blocks identified are
notable and so accept they are not unduly affecting the model for
the wrong reasons (e.g. a block with peculiar values).
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(b)

Figure 137: Plots of influence
measures. (a) COVRATIO
statistic; the dashed grey lines
indicate the lower 2.5% and
upper 97.5% quantiles of the
statistics and (b) PRESS statis-
tic; 95% of the statistics fall
below the dashed grey lines.
Labelled points on both plots
are outside the grey dashed
line(s) and are labelled with
the identifier for the block that
has been removed to create the
statistic (not an observation
number).
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11.2.6 Prediction and Inference

The prediction plots show a decline in bird density in the central
region (Figure 138) and an increase in the south of the study region.
This central region is where a known impact has taken place and
so the results suggest that birds have moved from this region to
the south post-impact. The lower and upper confidence interval for
before impact (Figure 139, left-hand plot) shows a higher density of
birds in the central and south region. Post-impact however, both the
lower and upper confidence limits represent a decline in density in
the central region and an increase in one of the southern grid cells.

This redistribution is clearer in Figure 140 (page 139) which
shows the mean difference in birds/km2 between before and after
and in particular, where any significant differences lie. In this case,
there is a significant decline in animals in three grid cells to the east
and north of the impact site and a significant increase in animals in
the south (four grid cells).

Figure 138: Predictions of bird
density (birds/km2) from the
fitted model for before (left)
and after (right) an impact
event. The grey triangles indi-
cate the location of the 6 knot
locations for the smooth of
space and the grey star is the
site of the impact event (e.g. a
wind turbine development)
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(a)

(b)

Figure 139: (a) upper and
(b) lower 95 percentile confi-
dence intervals of bird density
(birds/km2) from the fitted
model for before (left) and
after (right) an impact event.
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Figure 140: A plot of the mean
difference in predicted bird
density (birds/km2) before
and after impact. Positive
values indicate more birds
post-impact and negative val-
ues fewer birds post-impact.
Significant differences were
calculated using percentile
confidence intervals: ‘+’ in-
dicates a significant positive
difference and ‘o’ a significant
negative one. The grey star is
the site of the impact event.
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11.3 Comparison to the Truth

Our conclusions were well aligned with the simulated reality. The
generated data were over-dispersed and positively correlated in
blocks, both of which were recovered by the model.

The impact effect was also recovered; the simulated impact ef-
fect was a redistribution of animals away from the impacted area
into the south, while the overall abundance was constant pre and
post-impact. This redistribution was picked up by the model with a
significant interaction term and a refitted model without the inter-
action effect correctly signalled no underlying change in abundance
pre and post-impact. While a significant reduction in birds was
found around the impact site, this was not the case for the cell in
the centre of the impact; we expect this is due to the fact that so
few animals were present in the first instance. In general, the model
adequately reduced and re-allocated animals to the correct locations
(Figure 140), in the face of highly correlated and over-dispersed
count data.
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12 Appendix

12.1 Model choice results for the off-shore scenarios

Figure 141: GAM-based model
selection results for data generated
with the GAM-based surface and
Model I or II. The label on the hor-
izontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.

Figure 142: GAM-based model
selection results for data generated
with the CReSS-based surface and
Model I or II. The label on the hor-
izontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.
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Figure 143: CReSS-based model
selection results for data generated
with the GAM-based surface and
Model I. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.

Figure 144: CReSS-based model
selection results for data generated
with the CReSS-based surface and
Model I. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.
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Figure 145: GAMM-based model
selection results for data generated
with the GAM-based surface and
Model I. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.

Figure 146: GAMM-based model
selection results for data generated
with the CReSS-based surface and
Model I. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The red columns
represents the models which are
incorrectly chosen while the green
column in each case represents the
correct model.
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Figure 147: CReSS-based model
selection results for data generated
with the GAM-based surface and
Model II. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.

Figure 148: CReSS-based model
selection results for data generated
with the CReSS-based surface and
Model II. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.
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Figure 149: GAMM-based model
selection results for data generated
with the GAM-based surface and
Model II. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The red columns
represents the models which are
incorrectly chosen while the green
column in each case represents the
correct model.

Figure 150: GAMM-based model
selection results for data generated
with the CReSS-based surface and
Model II. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.
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Figure 151: GAM-based model
selection results for data generated
with the GAM-based surface and
Model III. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct modell.

Figure 152: GAM-based model
selection results for data generated
with the CReSS-based surface and
Model III. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.
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Figure 153: CReSS-based model
selection results for data generated
with the GAM-based surface and
Model III. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.

Figure 154: CReSS-based model
selection results for data generated
with the CReSS-based surface and
Model III. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.



148

Figure 155: GAMM-based model
selection results for data generated
with the GAM-based surface and
Model III. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.

Figure 156: GAMM-based model
selection results for data generated
with the CReSS-based surface and
Model III. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.
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12.2 Model choice results for the near-shore scenarios

Figure 157: GAM-based model
selection results for data generated
with the GAM-based surface and
Model I or II. The label on the hor-
izontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.

Figure 158: GAM-based model
selection results for data generated
with the CReSS-based surface and
Model I or II. The label on the hor-
izontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.
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Figure 159: CReSS-based model
selection results for data generated
with the GAM-based surface and
Model I. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.

Figure 160: CReSS-based model
selection results for data generated
with the CReSS-based surface and
Model I. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct modell.
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Figure 161: GAMM-based model
selection results for data generated
with the GAM-based surface and
Model I. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The red columns
represents the models which are
incorrectly chosen while the green
column in each case represents the
correct model.

Figure 162: GAMM-based model
selection results for data generated
with the CReSS-based surface and
Model I. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.
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Figure 163: CReSS-based model
selection results for data generated
with the GAM-based surface and
Model II. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.

Figure 164: CReSS-based model
selection results for data generated
with the CReSS-based surface and
Model II. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.
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Figure 165: GAMM-based model
selection results for data generated
with the GAM-based surface and
Model II. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.

Figure 166: GAMM-based model
selection results for data generated
with the CReSS-based surface and
Model II. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.
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Figure 167: GAM-based model
selection results for data generated
with the GAM-based surface and
Model III. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.

Figure 168: GAM-based model
selection results for data generated
with the CReSS-based surface and
Model III. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.
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Figure 169: CReSS-based model
selection results for data generated
with the GAM-based surface and
Model III. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.

Figure 170: CReSS-based model
selection results for data generated
with the CReSS-based surface and
Model III. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.
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Figure 171: GAMM-based model
selection results for data generated
with the GAM-based surface and
Model III. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.

Figure 172: GAMM-based model
selection results for data generated
with the CReSS-based surface and
Model III. The label on the hori-
zontal axis details the candidate
model (I, II or III) and the vertical
axis represents the frequency of
the 100 realisations which selected
each model. The columns without
pattern represents the models
which are incorrectly chosen while
the patterned column in each case
represents the correct model.
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12.3 Spatially explicit performance for the off-shore scenarios

Figure 173: Average GAM-based
bias (across the 100 realisations)
represented spatially for the
GAM generated data with no-
change post impact (Model I). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 174: Average CReSS-based
bias (across the 100 realisations)
represented spatially for the
GAM generated data with no-
change post impact (Model I). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 175: Average GAMM-
based bias (across the 100 reali-
sations) represented spatially for
the GAM generated data with
no-change post impact (Model I).
The left-hand plot represents the
pre-impact bias while the right-
hand plot represents post-impact
bias.
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Figure 176: Average GAM-based
bias (across the 100 realisations)
represented spatially for the
CReSS generated data with no-
change post impact (Model I). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 177: Average CReSS-based
bias (across the 100 realisations)
represented spatially for the
CReSS generated data with no-
change post impact (Model I). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 178: Average GAMM-
based bias (across the 100 reali-
sations) represented spatially for
the CReSS generated data with
no-change post impact (Model I).
The left-hand plot represents the
pre-impact bias while the right-
hand plot represents post-impact
bias.
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Figure 179: Average GAM-based
bias (across the 100 realisations)
represented spatially for the
GAM generated data with a de-
crease post impact (Model II). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 180: Average CReSS-based
bias (across the 100 realisations)
represented spatially for the
GAM generated data with a de-
crease post impact (Model II). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 181: Average GAMM-
based bias (across the 100 reali-
sations) represented spatially for
the GAM generated data with a
decrease post impact (Model II).
The left-hand plot represents the
pre-impact bias while the right-
hand plot represents post-impact
bias.
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Figure 182: Average GAM-based
bias (across the 100 realisations)
represented spatially for the
CReSS generated data with a de-
crease post impact (Model II). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 183: Average CReSS-based
bias (across the 100 realisations)
represented spatially for the
CReSS generated data with a de-
crease post impact (Model II). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 184: Average GAMM-
based bias (across the 100 reali-
sations) represented spatially for
the CReSS generated data with a
decrease post impact (Model II).
The left-hand plot represents the
pre-impact bias while the right-
hand plot represents post-impact
bias.
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Figure 185: Average GAM-based
bias (across the 100 realisations)
represented spatially for the GAM
generated data with a redistribu-
tion post impact (Model III). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 186: Average CReSS-based
bias (across the 100 realisations)
represented spatially for the GAM
generated data with a redistribu-
tion post impact (Model III). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 187: Average GAMM-
based bias (across the 100 realisa-
tions) represented spatially for the
GAM generated data with a redis-
tribution post impact (Model III).
The left-hand plot represents the
pre-impact bias while the right-
hand plot represents post-impact
bias.
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Figure 188: Average GAM-based
bias (across the 100 realisations)
represented spatially for the
CReSS generated data with a re-
distribution post impact (Model
III). The left-hand plot repre-
sents the pre-impact bias while
the right-hand plot represents
post-impact bias.

Figure 189: Average CReSS-based
bias (across the 100 realisations)
represented spatially for the
CReSS generated data with a re-
distribution post impact (Model
III). The left-hand plot repre-
sents the pre-impact bias while
the right-hand plot represents
post-impact bias.

Figure 190: Average GAMM-
based bias (across the 100 reali-
sations) represented spatially for
the CReSS generated data with a
redistribution post impact (Model
III). The left-hand plot repre-
sents the pre-impact bias while
the right-hand plot represents
post-impact bias.
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12.4 Spatially explicit performance for the near-shore scenarios

Figure 191: Average GAM-based
bias (across the 100 realisations)
represented spatially for the
GAM generated data with no-
change post impact (Model I). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 192: Average CReSS-based
bias (across the 100 realisations)
represented spatially for the
GAM generated data with no-
change post impact (Model I). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 193: Average GAMM-
based bias (across the 100 reali-
sations) represented spatially for
the GAM generated data with
no-change post impact (Model I).
The left-hand plot represents the
pre-impact bias while the right-
hand plot represents post-impact
bias.
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Figure 194: Average GAM-based
bias (across the 100 realisations)
represented spatially for the
CReSS generated data with no-
change post impact (Model I). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 195: Average CReSS-based
bias (across the 100 realisations)
represented spatially for the
CReSS generated data with no-
change post impact (Model I). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 196: Average GAMM-
based bias (across the 100 reali-
sations) represented spatially for
the CReSS generated data with
no-change post impact (Model I).
The left-hand plot represents the
pre-impact bias while the right-
hand plot represents post-impact
bias.



statistical modelling of seabird and cetacean data: guidance document 165

Figure 197: Average GAM-based
bias (across the 100 realisations)
represented spatially for the
GAM generated data with a de-
crease post impact (Model II). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 198: Average CReSS-based
bias (across the 100 realisations)
represented spatially for the
GAM generated data with a de-
crease post impact (Model II). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 199: Average GAMM-
based bias (across the 100 reali-
sations) represented spatially for
the GAM generated data with a
decrease post impact (Model II).
The left-hand plot represents the
pre-impact bias while the right-
hand plot represents post-impact
bias.
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Figure 200: Average GAM-based
bias (across the 100 realisations)
represented spatially for the
CReSS generated data with a de-
crease post impact (Model II). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 201: Average CReSS-based
bias (across the 100 realisations)
represented spatially for the
CReSS generated data with a de-
crease post impact (Model II). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 202: Average GAMM-
based bias (across the 100 reali-
sations) represented spatially for
the CReSS generated data with a
decrease post impact (Model II).
The left-hand plot represents the
pre-impact bias while the right-
hand plot represents post-impact
bias.
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Figure 203: Average GAM-based
bias (across the 100 realisations)
represented spatially for the GAM
generated data with a redistribu-
tion post impact (Model III). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 204: Average CReSS-based
bias (across the 100 realisations)
represented spatially for the GAM
generated data with a redistribu-
tion post impact (Model III). The
left-hand plot represents the pre-
impact bias while the right-hand
plot represents post-impact bias.

Figure 205: Average GAMM-
based bias (across the 100 realisa-
tions) represented spatially for the
GAM generated data with a redis-
tribution post impact (Model III).
The left-hand plot represents the
pre-impact bias while the right-
hand plot represents post-impact
bias.
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Figure 206: Average GAM-based
bias (across the 100 realisations)
represented spatially for the
CReSS generated data with a re-
distribution post impact (Model
III). The left-hand plot repre-
sents the pre-impact bias while
the right-hand plot represents
post-impact bias.

Figure 207: Average CReSS-based
bias (across the 100 realisations)
represented spatially for the
CReSS generated data with a re-
distribution post impact (Model
III). The left-hand plot repre-
sents the pre-impact bias while
the right-hand plot represents
post-impact bias.

Figure 208: Average GAMM-
based bias (across the 100 reali-
sations) represented spatially for
the CReSS generated data with a
redistribution post impact (Model
III). The left-hand plot repre-
sents the pre-impact bias while
the right-hand plot represents
post-impact bias.
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12.5 Residual analysis for the off-shore scenarios

Figure 209: Average GAM-
based residuals (across the
100 realisations) represented
spatially for the GAM gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
mean residuals while the
right-hand plot represents
post-impact mean residuals.

Figure 210: Average CReSS-
based residuals (across the
100 realisations) represented
spatially for the GAM gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
mean residuals while the
right-hand plot represents
post-impact mean residuals.

Figure 211: Average GAMM-
based residuals (across the
100 realisations) represented
spatially for the GAM gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
bias while the right-hand plot
represents post-impact bias.
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Figure 212: Average GAM-
based residuals (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
mean residuals while the
right-hand plot represents
post-impact mean residuals.

Figure 213: Average CReSS-
based residuals (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
mean residuals while the
right-hand plot represents
post-impact mean residuals.

Figure 214: Average GAMM-
based residuals (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
mean residuals while the
right-hand plot represents
post-impact mean residuals.
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Figure 215: Average GAM-
based residuals (across the 100

realisations) represented spa-
tially for the GAM generated
data with a decrease post im-
pact (Model II). The left-hand
plot represents the pre-impact
mean residuals while the
right-hand plot represents
post-impact mean residuals.

Figure 216: Average CReSS-
based residuals (across the 100

realisations) represented spa-
tially for the GAM generated
data with a decrease post im-
pact (Model II). The left-hand
plot represents the pre-impact
mean residuals while the
right-hand plot represents
post-impact mean residuals.

Figure 217: Average GAMM-
based residuals (across the 100

realisations) represented spa-
tially for the GAM generated
data with a decrease post im-
pact (Model II). The left-hand
plot represents the pre-impact
mean residuals while the
right-hand plot represents
post-impact mean residuals.
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Figure 218: Average GAM-
based residuals (across the
100 realisations) represented
spatially for the CReSS gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.Figure 219: Average CReSS-
based residuals (across the
100 realisations) represented
spatially for the CReSS gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.Figure 220: Average GAMM-
based residuals (across the
100 realisations) represented
spatially for the CReSS gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.
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Figure 221: Average GAM-
based residuals (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.Figure 222: Average CReSS-
based residuals (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.Figure 223: Average GAMM-
based residuals (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.
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Figure 224: Average GAM-
based residuals (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.Figure 225: Average CReSS-
based residuals (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.Figure 226: Average GAMM-
based residuals (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.
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12.6 Residual analysis for the near-shore scenarios

Figure 227: Average GAM-
based residuals (across the
100 realisations) represented
spatially for the GAM gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
mean residuals while the
right-hand plot represents
post-impact mean residuals.

Figure 228: Average CReSS-
based residuals (across the
100 realisations) represented
spatially for the GAM gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
mean residuals while the
right-hand plot represents
post-impact mean residuals.

Figure 229: Average GAMM-
based residuals (across the
100 realisations) represented
spatially for the GAM gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
bias while the right-hand plot
represents post-impact bias.
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Figure 230: Average GAM-
based residuals (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
mean residuals while the
right-hand plot represents
post-impact mean residuals.

Figure 231: Average CReSS-
based residuals (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
mean residuals while the
right-hand plot represents
post-impact mean residuals.

Figure 232: Average GAMM-
based residuals (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
mean residuals while the
right-hand plot represents
post-impact mean residuals.
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Figure 233: Average GAM-
based residuals (across the 100

realisations) represented spa-
tially for the GAM generated
data with a decrease post im-
pact (Model II). The left-hand
plot represents the pre-impact
mean residuals while the
right-hand plot represents
post-impact mean residuals.

Figure 234: Average CReSS-
based residuals (across the 100

realisations) represented spa-
tially for the GAM generated
data with a decrease post im-
pact (Model II). The left-hand
plot represents the pre-impact
mean residuals while the
right-hand plot represents
post-impact mean residuals.

Figure 235: Average GAMM-
based residuals (across the 100

realisations) represented spa-
tially for the GAM generated
data with a decrease post im-
pact (Model II). The left-hand
plot represents the pre-impact
mean residuals while the
right-hand plot represents
post-impact mean residuals.
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Figure 236: Average GAM-
based residuals (across the
100 realisations) represented
spatially for the CReSS gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.
Figure 237: Average CReSS-
based residuals (across the
100 realisations) represented
spatially for the CReSS gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.
Figure 238: Average GAMM-
based residuals (across the
100 realisations) represented
spatially for the CReSS gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.



statistical modelling of seabird and cetacean data: guidance document 179

Figure 239: Average GAM-
based residuals (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.
Figure 240: Average CReSS-
based residuals (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.
Figure 241: Average GAMM-
based residuals (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.
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Figure 242: Average GAM-
based residuals (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.
Figure 243: Average CReSS-
based residuals (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.
Figure 244: Average GAMM-
based residuals (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact mean residuals
while the right-hand plot
represents post-impact mean
residuals.
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12.7 Assessing the reliability of the reported geo-referenced precision
for the off-shore scenarios

Figure 245: GAM-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
coverage while the right-hand
plot represents post-impact
coverage.

Figure 246: CReSS-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
coverage while the right-hand
plot represents post-impact
coverage.

Figure 247: GAMM-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
coverage while the right-hand
plot represents post-impact
coverage.
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Figure 248: GAM-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
coverage while the right-hand
plot represents post-impact
coverage.

Figure 249: CReSS-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
coverage while the right-hand
plot represents post-impact
coverage.

Figure 250: GAMM-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gen-
erated data with a no-change
post impact (Model I). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.
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Figure 251: GAM-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 252: CReSS-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 253: GAMM-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.
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Figure 254: GAM-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 255: CReSS-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 256: GAMM-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.
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Figure 257: GAM-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 258: CReSS-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 259: GAMM-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.
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Figure 260: GAM-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 261: CReSS-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 262: GAMM-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.
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12.8 Assessing the reliability of the reported geo-referenced precision
for the near-shore scenarios

Figure 263: GAM-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
coverage while the right-hand
plot represents post-impact
coverage.

Figure 264: CReSS-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
coverage while the right-hand
plot represents post-impact
coverage.

Figure 265: GAMM-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
coverage while the right-hand
plot represents post-impact
coverage.
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Figure 266: GAM-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
coverage while the right-hand
plot represents post-impact
coverage.

Figure 267: CReSS-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with no-change post
impact (Model I). The left-hand
plot represents the pre-impact
coverage while the right-hand
plot represents post-impact
coverage.

Figure 268: GAMM-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gen-
erated data with a no-change
post impact (Model I). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.
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Figure 269: GAM-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 270: CReSS-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 271: GAMM-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.
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Figure 272: GAM-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 273: CReSS-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 274: GAMM-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gen-
erated data with a decrease
post impact (Model II). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.
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Figure 275: GAM-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 276: CReSS-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 277: GAMM-based per-
centage coverage (across the
100 realisations) represented
spatially for the GAM gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.
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Figure 278: GAM-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 279: CReSS-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.

Figure 280: GAMM-based per-
centage coverage (across the
100 realisations) represented
spatially for the CReSS gener-
ated data with a redistribution
post impact (Model III). The
left-hand plot represents the
pre-impact coverage while
the right-hand plot represents
post-impact coverage.
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